EXOTIC HIGGS DECAY WITH HADRONIC FINAL STATES

JIAWEI WANG
30/08/2016

OUTLINE

- \circ Introduction
- Data Generation
- Cuts
- Results of scan
- \circ Future plan and summary

INTRODUCTION

- ZH is the major production channel in 250 GeV e⁺e⁻ collider. Using the recoil mass method, the Higgs mass can be precisely measured. Therefore, the exotic Higgs decay search in CEPC is of great interest.
- The width of 125 GeV SM-like Higgs is very narrow (≈ 4 MeV) so a small coupling to another light state leads to a sizable exotic decay branching ratio. We are looking into the exotic decay modes which are allowed in NMSSM.

INTRODUCTION

- $h \rightarrow MET$
- $h \rightarrow \tau \mu$
- $h \rightarrow R + X$
- $h \rightarrow RR$
- $h \rightarrow ZR$

- An upper limit for the sensitivity of each channel on CEPC is desired
- Scan on the mass parameter(s) in the last three channels

• Plan proposed by Prof. Tao LIU

INTRODUCTION

- An upper limit for the sensitivity of each channel on CEPC is desired
- Scan on the mass parameter(s) in the last three channels

• Plan proposed by Prof. Tao LIU

Semi-invisible Channel

6

Semi-invisible Channel

• Scan over the parameter space of $M_{\chi 1}$, $M_{\chi 2}$ and M_{h1} :

I) Fix $M_{\chi 1} = 0$ GeV and make exclusion contours on the M_{h1} and $M_{\chi 2}$ plane with the range:

- 10 GeV < M_{h1} < 60 GeV (15, 25, 35, 45, 55 GeV)
- 10 GeV < $M_{\chi 2}$ < 125 GeV (20, 40, 60, 80, 100, 120 GeV)

2) Fix $M_{h1} = 30$ GeV and make exclusion contours on the $M_{\chi 1}$ and $M_{\chi 2}$ plane, with the range:

- 0 GeV < $M_{\chi 1}$ < 60 GeV (5, 15, 25, 35, 45, 55 GeV)
- 10 GeV < $M_{\chi 2}$ < 125 GeV (20, 40, 60, 80, 100, 120 GeV)

DATA GENERATION

- I 0000 events by MadGraph5 (version 2.3.2) NMSSM model
- Fix the final state as $h_1 \rightarrow bb$ and $Z \rightarrow \mu\mu$
- Full-simulation via Mokka (release 08-03) & Arbor (version v3_KD) with model cepc_v1

BACKGROUNDS

- 2 jets + 2 muons
- ZH background: $ZH \rightarrow bb\mu\mu$ (/cefs/tmp_storage/yant/gridfs/cepc/user/w/weiyq/e2e2h_615)
- ZZ backgrounds:
- I. Leptonic: $ZZ \rightarrow 4l$ (/cefs/higgs/weiyq/E250.Pzz_l.e0.p0.whizard195_bkg)
- 2. Semi-leptonic: $ZZ \rightarrow 2l + 2f$ (/cefs/higgs/yant/E250.Pzz_sl.e0.p0.whizard195_bkg)
- (Tested hadronic ZZ decays, less than 10 events out of 6889948 passed pre-selection)

GENERAL CUTS

- I. FSClasser (2 isolated muons + 2 jets, including m_{ll} cut, requiring 81.18GeV $< m_{ll} < 101.18$ GeV)
- 2. Recoil mass: $110 \text{GeV} < m_{reco} < 140 \text{GeV}$
- 3. B likeness: at least one jet with b likeness larger than 0.9
- 4. Missing energy: $E_{missing} > 20 \text{GeV}$

M_{reco} AND M_{jj} DISTRIBUTION (WITHOUT CUTS)

 $M_{\chi 1} = 0, M_{\chi 2} = 80 \text{GeV} \text{ and } M_{h1} = 35 \text{GeV}$

11

$E_{missing}$ DISTRIBUTION (WITH OTHER CUTS APPLIED)

 $M_{\chi 1} = 0, M_{\chi 2} = 80 \text{ GeV} \text{ and } M_{h1} = 35 \text{ GeV}$

 $M_{\chi 1} = 0, M_{\chi 2} = 100 \text{ GeV} \text{ and } M_{h1} = 55 \text{GeV}$

CUT FLOW

	Total	FSClasser	Recoil mass	b likeness	Missing E	mjj	Percentage
Signal	10000	8342	8273	6750	6749	6673	66.7%
Signal*	41	35	34	28	28	28	66.7%
ZH background	35849	28002	25874	13783	2399	22	0.061%
ZZ background	3004042	280140	39700	5957	3639	174	0.0058%

 $M_{\chi_1} = 0, M_{\chi_2} = 100 \text{ GeV} \text{ and } M_{h_1} = 55 \text{ GeV}$

The main remaining backgrounds are from ZZ decays For a 2 sigma significance, we need: $\frac{Br(H \text{ exotic decay})}{Br(H \text{ SM decay})} \ge 1.17 \times 10^{-03}$

13

Scan Results

Fixing M_{χ_1} as 0

Fixing M_{h_1} as 30 GeV

Scan Results

- The most important parameter: M_{h_1}
- Higher M_{h_1} , M_{jj} closer to Z pole and thus more ZZ backgrounds
- Other two parameters M_{χ_1} and M_{χ_2} do not influence the significance much (same level as data fluctuation)

SUMMARY

- Full-simulated samples are analyzed using the recoil-mass method
- A distribution is obtained for the upper limit for the sensitivity of the semi-invisible channel on CEPC
- Future plan: continue the search on exotic Higgs Plan
- Will work on $h \to RR$ with $R \to qq, R \to ll$ or $R \to \gamma\gamma$

Thank You!