Geometry Optimization in CEPC Hardronic Calorimeter

S.Chen 2016.8.29

Outline

Motivation
Hit Level
Cluster Level
Digitizer

Part1 Motivation

- HCAL in CEPC: Sample Calorimeter
- Structure: Thickness, Layers, Cell Size
- Change these parameter , compare the performance of HCAL
- Only HCAL Model by Mokka

Part2 Hit Level

- Single Particle: Pion
- Scan: Layers, Cell Size, ...
- Compare: the Linarity & Resolution

Energy Estimate <

 $R = \varepsilon E$

 $\rightarrow E = \frac{1}{\varepsilon}R = kR$

- R: Calorimeter Response
- E: Estimated Energy

Energy Estimate

pi+ Linarity(E/E_paricle)

pi+ Resolution(RMS)

10GeV~30GeV

Energy Estimate(Physics List)

pi+ Linarity(E/E_paricle)

6

Simulation Result : 3.12×10^4

Digital Readout

pi+ Resolution(RMS)

pi+ Resolution

pi+ 30GeV

pi+ 30GeV

Thickness of Absorber

Cell: 1cmX1cm

10

Image: Constraint of the second se

- Sensitive Region: Ar
- Keep the total thickness absorber :5000mm(30 λ_{l} , Fe: λ_{l} = 167.6mm)
- Thick enough to elimiate the effect of energy
- Change the thickness of iron(from <u>20 to 50mm</u>)

Thickness Result

- Improve the energy estimator
- @cluster level || @digitization ---> ?

Part2. Cluster Level

Check the efficiency of PFA

Benchmark of Cluster Level

For single particle:

- Hit Level → Total Hit Energy → THEn
- Cluster Level → Total Cluster Energy → TCEn
- Leading Cluster → Leading Cluster → LCEn
- TCEn/THEn: PFA识别效率
- LCEn/TCEn , NClu

muon的Cluster Level的重建

mu+ LCEn/TCEn

mu+ TCEn/THEn

单粒子入射

electron的Cluster Level的重建

单粒子入射

LCEn: Leading Cluster的重建能量 TCEn: Cluster的总能量 THEn: Hit Level的总能量

15

pion的Cluster Level的重建

单粒子入射

neutron的Cluster Level的重建

单粒子入射

KOL的Cluster Level的重建

单粒子入射

重建前后Linarity对比

K_{OL}的Cluster Level的重建

单粒子入射

重建前后Resolution对比

Part3.Digitizer

- •考虑实际的探测器性能
- 数字读出的量能器
- 探测效率的影响

• 探测器位置分辨的影响

Principle of Gaseous Detector

1. Principle → Spatial Distribution

Simulation Detector : Only gaseous layer

Drift & Avalanche

2 Noise \rightarrow Threshold \rightarrow Efficiency

Simulation Result : Only primary ionization

Distribution of charge

The Q spectrum of one MIP of induction can be estimated from the Polya PDF defined by:

$$P(Q_{ind}; a, b, c) = Q_{ind}^{a} e^{-bQ_{ind}} + c$$

Distribution of charge

The efficiency as the function of threshold Qthr can be expressed by:

$$\varepsilon(Q_{thr}) = 1 - c \int_0^{Q_{thr}} P(Q_{ind}; a, b, c) dQ_{ind}$$

Charge of MPGD

Data from C. A. et al., JINST P11023,2009

Charge of GRPC

25

Threshold Scan

pi+ Linarity

Spitial Distribution

- 1. 1mmX1mm Cell Size模拟
- 根据实验的Charge Distribution和Charge X-Y Distribution,将Hit能量转化为电荷量,并按比例分 配到不同1cmX1cm格子内
- 3. 累加所有Hit的响应,每格给予相同能量值

Spitial Distribution

Compare E

Compare R(THGEM)

Compare R(GRPC)

pi+ Resolution

Neutron(THGEM)

Neutron(RPC)

neutron Linarity

backup

Pion 150GeV 200Layers

Neibohor

Neibohor

