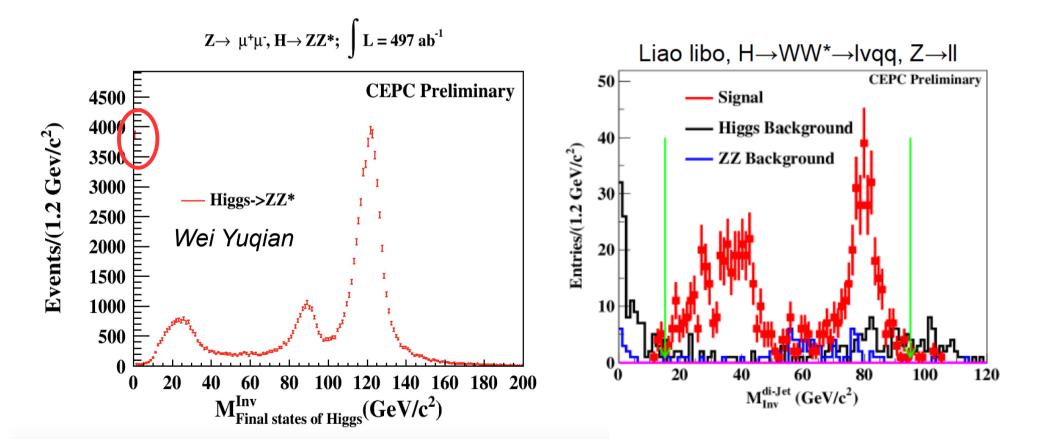
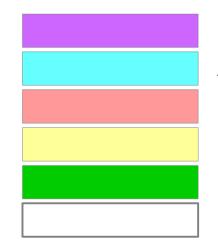
CEPC Detector Optimization & Key analysis


Outline

- Key Analysis: Br(H->WW/ZZ)
- Optimization:
 - VTX:
 - Inner most radius, flavor tagging & Br(H->bb, cc, gg) measurements
 - Calorimeter:
 - Performance wi/wo active cooling
 - PID
 - Higgs recoil analysis, Br(H->ZZ)
 - ECAL Dynamic Ranger & Br(H->di photon)

Key analysis

Higgs to ZZ/WW


Portal to Higgs width & perfect test bed for detector/reconstruction performance...

$Br(H \rightarrow ZZ)$

Expected Number of events with different objects

	Z→II	tautau	VV	qq
H→ZZ*→4q	888	444	3.10k	9.24k
2v + 2q	508	254	1.77k	5.29k
2l + 2q	170	85	596	1.8k
4v	73	36	254	756
2l + 2v	49	24	170	508
41	8	4	28	86
X + tau	120	60	418	1246

More than 2 jets, Await for sophisticated Jet Clustering Await for tau finder limited accuracy ~ > 50% Explored by H->invisible analysis -> Accuracy ~ 40%

Promising channels

Unexplored

YQ. Wei

$Br(H \rightarrow ZZ)$

ZZZ*	Yield	Object reconstructed	Signal Efficiency(%)	Main Background	Accuracy (%)	Comments
μμννqq	128	118	63.3	h->ww&zz_sl	12.9	Tau finder would be
μμqqvv	128	125	-	h->bb&zz_sl	>25	highly appreciated
eevvqq	132	91	53.8	h->ww&sze_sl	15.8	
eeqqvv	132	88	-	h->bb&zz_sl	>25	Reconstructed
vvµµqq	158	144	61.4	h->t,w&zz_sl	11.0	efficiency of electron need to be improved
vvqqµµ	158	149	51.9	h->w,b&zz_sl	12.9	need to be improved
vveeqq	151	118	43.1	h->w&sze_sl	21.3	
vvqqee	151	134	-	h->bb&sze_sl	>25	
qqµµvv	135	115	-	h->tt&zz_sl	>25	Compare to ll recoil,
qqvvµµ	135	122	-	h->t,w&zz_sl	>25	qq recoil mass has much worse
qqeevv	127	107	-	h->tt&sze_sl	>25	distinguishing power
qqvvee	127	123	-	h->t,w&sze_sl	>25	to SM background
արահով չվեր	43	39	69.8	h->tt&zz_sl	19.9	Tau finder & Electron
µµeeqq/qqee	43	39	60.5	h->tt&zz_sl	21.2	Reconstruction
eeeeqq/eeqqee	43	33	-	h->tt&sze_sl	>25]
eeµµqq/eeqqµµ	43	41	58.2	h->tt&sze_sl	19.9	

Full Simulation analysis performed on 16 independent channels.

8 Channels acquire accuracy better than 25%.

Combined accuracy: **5.4%**

If electron id efficiency ~ muon id: 4.8%

TLEP extrapolation: 4.3%

Br(H→WW)

Expected Number of events with different objects

	Z→II	tautau	VV	qq	
H→WW*→4q	6.91k	3.45k	19.74k	69.1k	
hvdd	2.27k	1.14k	6.47k	22.7k	
evqq	2.27k	1.14k	6.47k	22.7k	LB. Liao
eevv	186	93	527	1.9k	
μμνν	186	93	527	1.9k	
eμvv	372	186	1154	3.7k	
X + tau	3.2k	1.6k	9.14k	32.0k	

E
A
A
F
Ρ
U

Extrapolated from ILC results

wait for tau finder

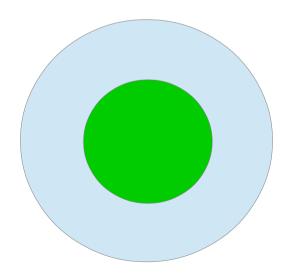
wait for the SM Background simulation

ull Simulation

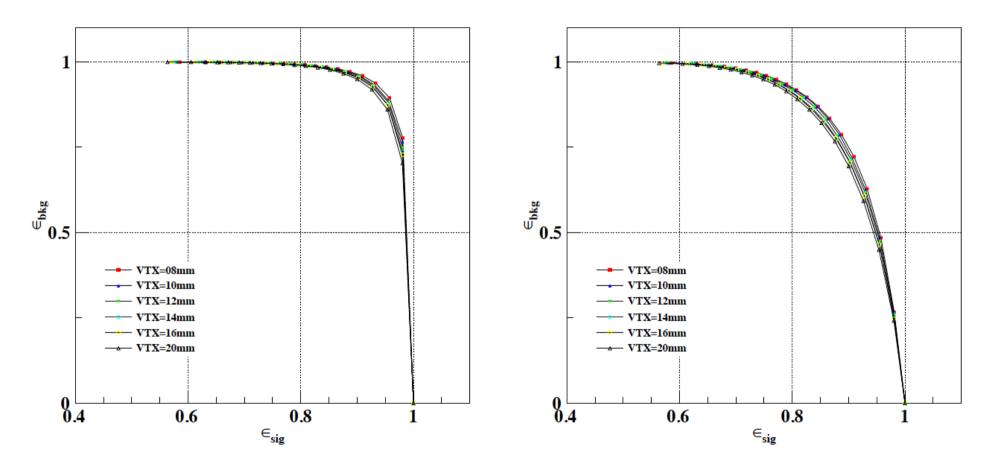
Preliminary result acquired

nexplored

Br(H→WW)

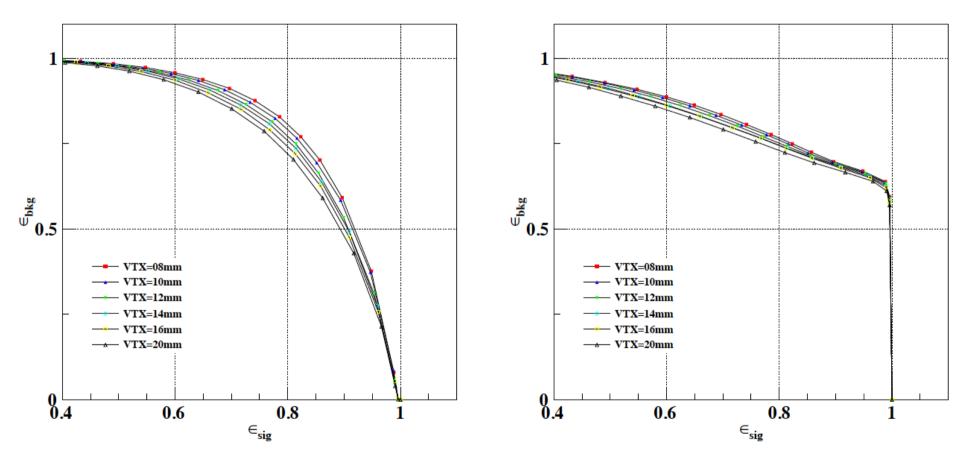

ZH, H->WW*	Yield	Object	Isolation	Signal	Main	Accuracy	Combined
		reconstructed		Efficiency	Background		
Z(μμ)H(evev)	88	76(86.36%)	61(80.26%)	36(40.91%)	4(ZH)	17.57%	
Ζ(μμ)Η(μνμν)	89	80(89.89%)	77(96.25%)	52(58.43%)	6(ZH&ZZ)	14.65%	
Z(μμ)H(evμv)	174	157(90.23%)	147(93.63%)	105(60.34%)	0	9.76%	2.68%
$Z(\mu\mu)H(evqq)$	1105	1042(94.30%)	864(82.92%)	663(60.00%)	45(ZH)	4.02%	
Z(μμ)H(μvqq)	1110	1056(95.14%)	988(93.56%)	717(64.59%)	159(ZH&ZZ)	4.13%	
Z(μμ)H(qqqq)			Prelin	ninary			3.0%
Z(ee)H(evev)	91	62(68.13%)	60(96.77%)	22(24.16%)	16(SZ)	28.02%	
Z(ee)H(μvμv)	82	63(76.83%)	63(100%)	44(53.66%)	24(SZ)	18.74%	
Z(ee)H(evµv)	178	132(74.16%)	124(93.94%)	82(46.07%)	25(ZH&SZ)	12.61%	2.87%
Z(ee)H(evqq)	1182	1041(88.07%)	916(87.99%)	621(51.78%)	188(SZ&ZH)	4.62%	
Z(ee)H(µvqq)	1221	1194(97.79%)	1048(87.77%)	684(56.02%)	49(ZH&SZ)	3.96%	
Z(ee)H(qqqq)			Preliminary	estimation			3.2%

- Full Simulation on 12 independent channels
 - Very high object reconstruction efficiency
 - Combined result: 1.45%
- Extrapolation from other ILC channels: 1.59%
- Combined: 1.07%

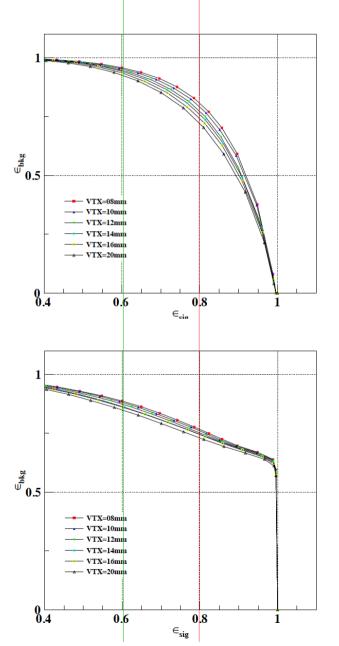

	Z→II	tautau	vv	gg	
H→WW*→4q		3.45k	2.3%	69.1k	
pyqq		1.14k	6.47k	2.2%	
evqq	1 450/	1.14k	6.47k	2.270	
eevv	1.45%	93	527	1.9k	
μμνν		93	527	1.9k	
eμvv		186	1154	3.7k	
X + tau	3.2k	1.6k	9.14k	32.0k	

Optimization: VTX

- Foreword:
 - The design of MDI is not finalized yet.
 - Simply scan over different inner radius of VTX...
 - 16 mm -> 8 mm



RoC Curve @ different radius


• B-tagging (Left: light background & Right: c-background)

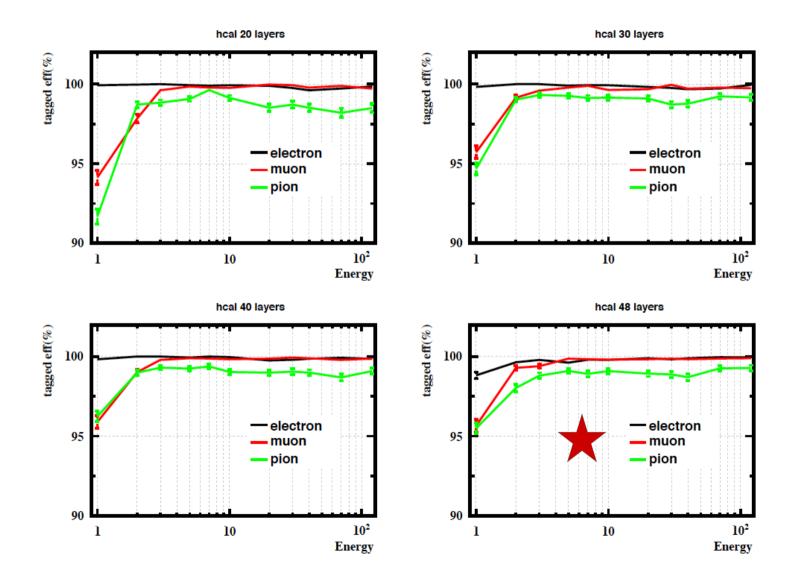
RoC Curve @ different radius

• C-tagging (Left: light background & Right: b-background)

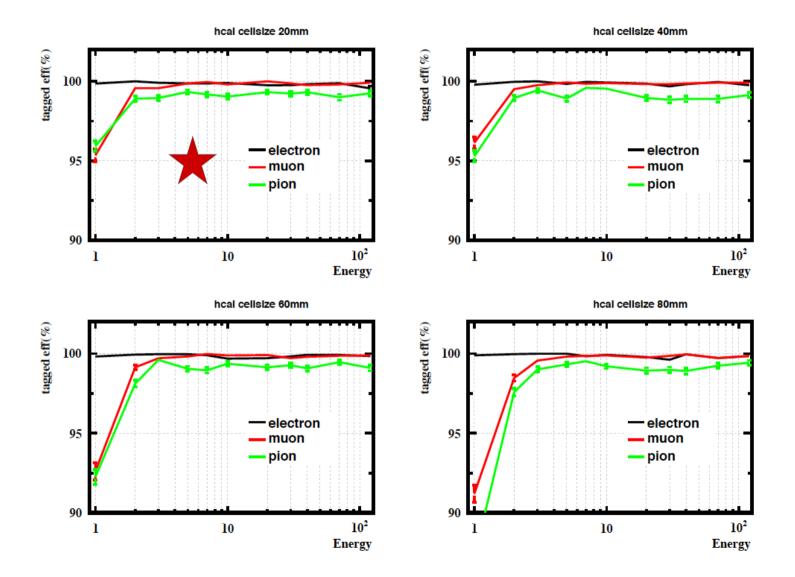
RoC Curve @ different radius

- Z decay Branching ratio
 - Br(Z->uc): 11.6%
 - Br(Z->dsb): 15.6%
- In Z->qq sample
 - 16.6% Z->cc
 - 22.3% Z->bb
 - 61.1% Z->uds
- At Efficiency = 60% (Green Line)
 - P(uds->c) = 0.045/0.08
 - P(b->c) = 0.12/0.16
 - Purity = 0.6*16.6/(0.6*16.6 + 0.045(0.08)*61.1 + 0.12(0.16)*23.3) = 64%(53%)
- At Efficiency = 80% (Red line)
 - Purity = 44%(36%)

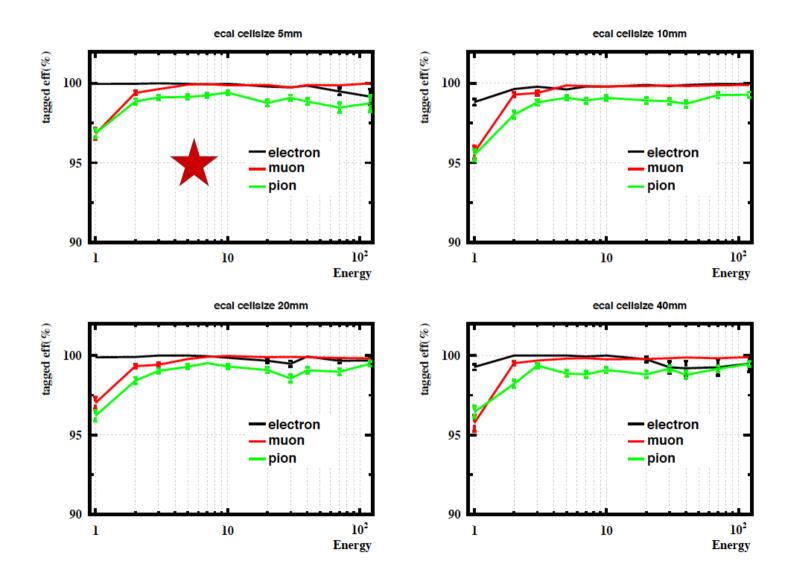
Optimization: Calorimeter

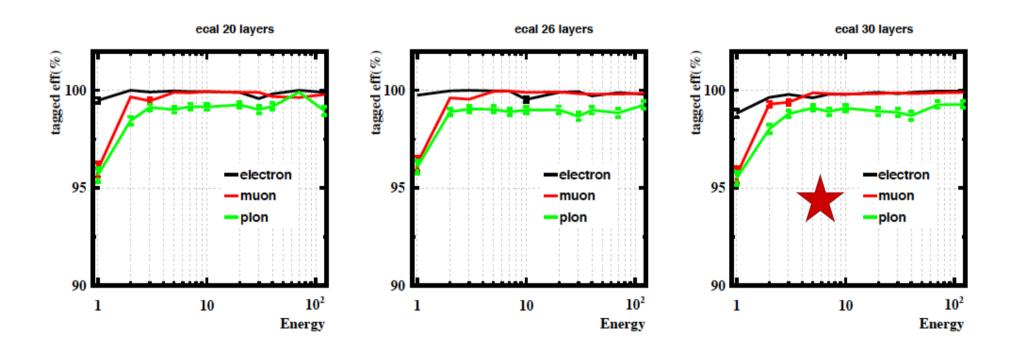

- Granularity: Wi/wo active cooling
 - Setting:
 - Active cooling in simulation: + 2mm thick cooper per active layer (reference to CMS HGC)
 - Wo: Reduce the granularity by more than 1 order of magnitude
 - Performance:
 - PID;
 - Separation & JER
 - Physics benchmark:
 - Z->di muon, Higgs to inc;
 - Z->di muon, vv; H->ZZ->llqq;
- ECAL Saturation studies: H->di photon

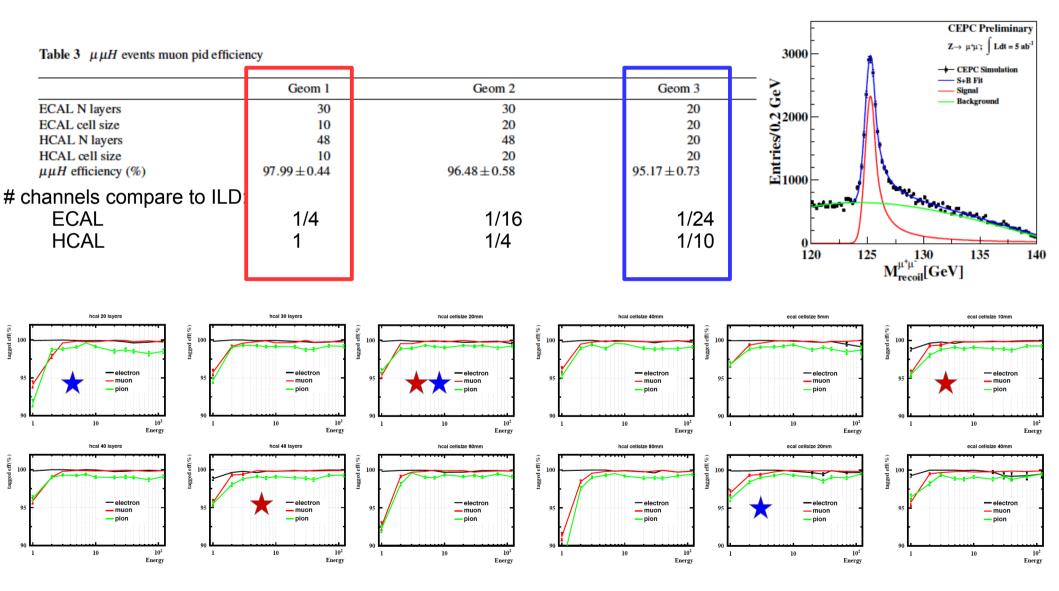
PID @ Different Granularity:


Solved By Dan

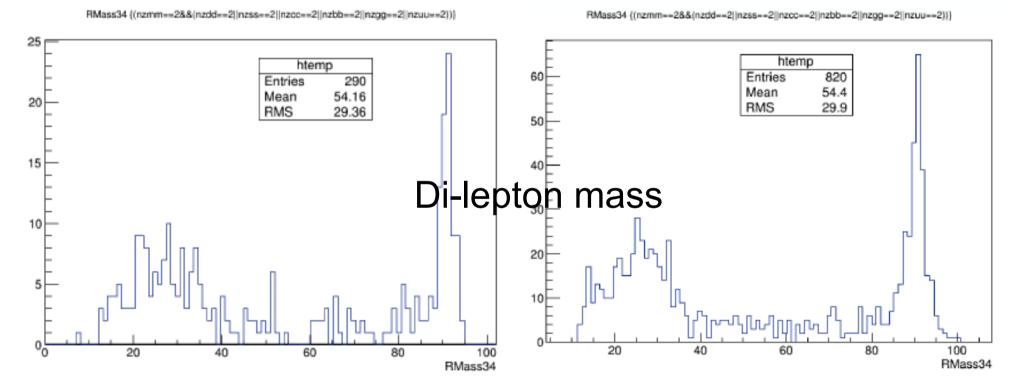
Varies from standard: ECAL 30 layer & 5 mm cell size HCAL 48 layers & 10 mm cell size


LICH: different HCAL layer


LICH: different HCAL cell size


LICH: different ECAL Cell size

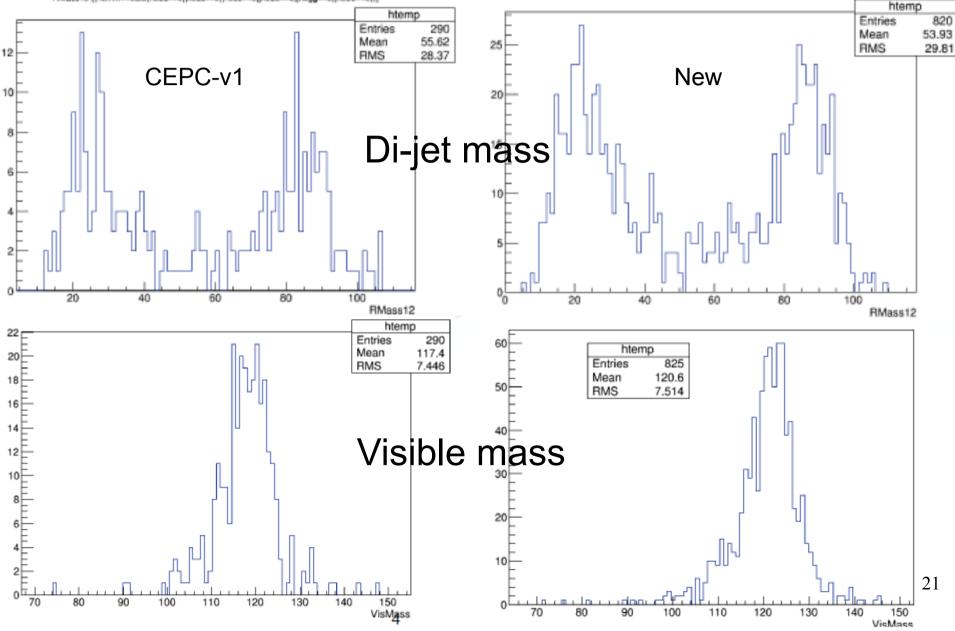
LICH: different ECAL Layers


@Physics: Ζ->μμ, Η->inc

@Physics: Z->µµ/vv, H->ZZ->llqq

CEPC_v1 ECAL: 5mm * 30L HCAL: 10mm * 48L

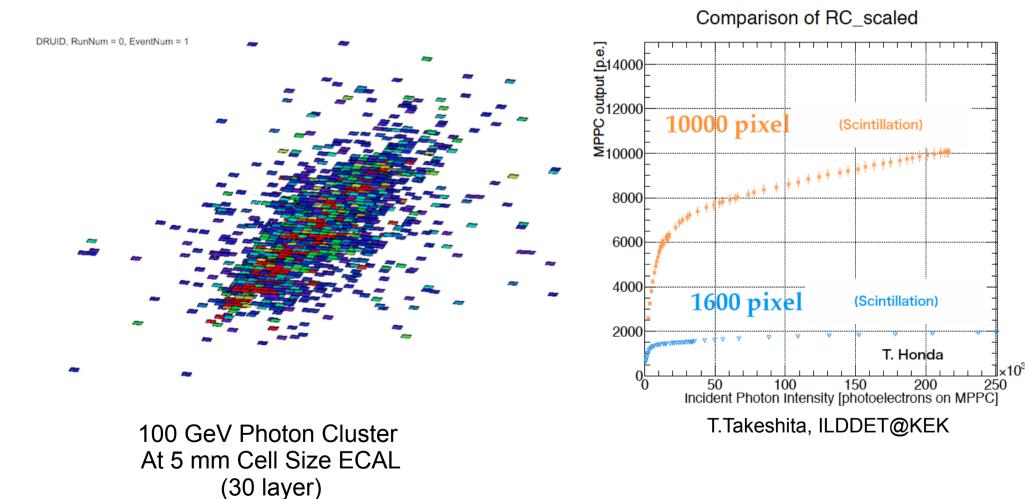
New ECAL: 20mm * 30L HCAL: 20mm * 48L

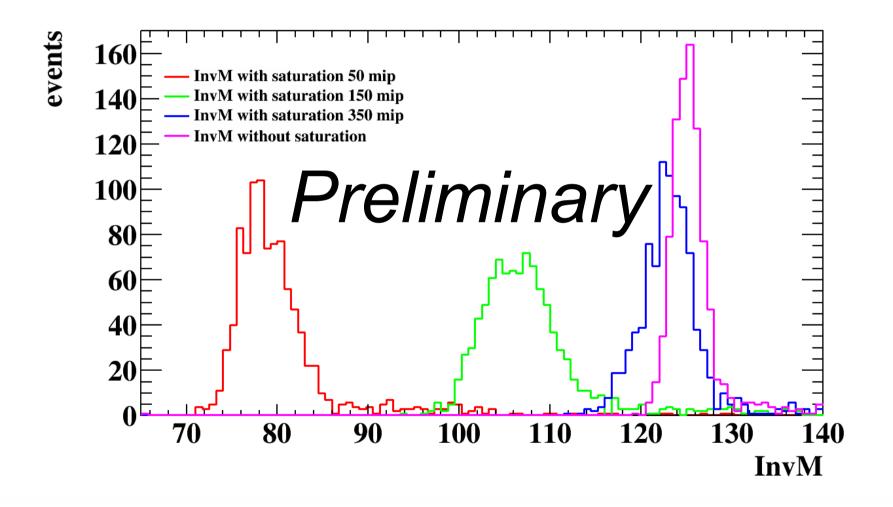


Efficiency of finding all objects: 95% (CEPC_v1) -> 93% (New)

@Physics: Z->µµ/vv, H->ZZ->llqq

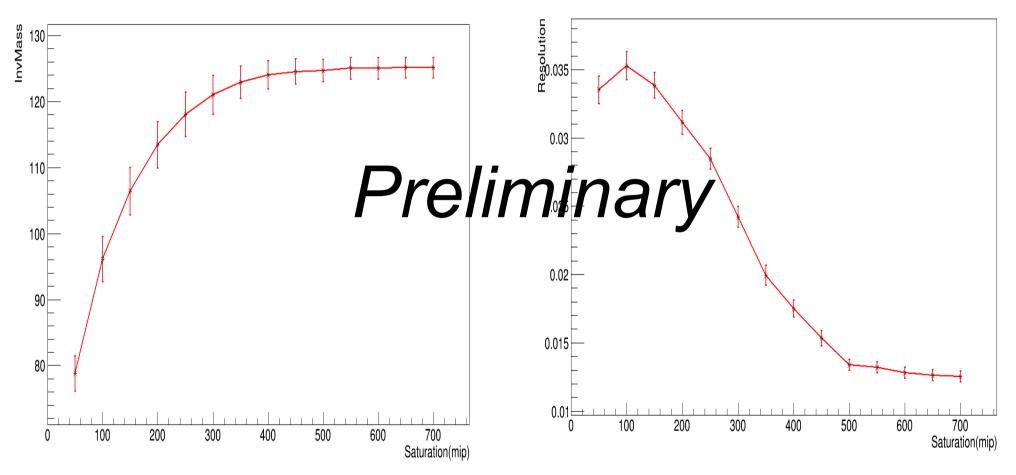
RMass12 ((nzmm==2&&(nzdd==2)(nzss==2)(nzcc==2)(nzbb==2)(nzpg==2)(nzuu==2)))


RMass12 {(nzmm==2&&(nzdd==2]|nzss==2||nzcc==2||nzbb==2||nzpg==2||nzuu==2))}


At Physics Benchmark

- From CEPC_v1 -> Active Cooling Free Module...
- Efficiency reduced by ~ 1-2%, Jet Mass distributions very similar.
 - Z->di muon, H->inc
 - Z->di muon/vv, H->ZZ->llqq
- Physics Object of Low Energy Leptons & Jet Leptons is not yet tested
- Electron ID at different Geometry need to be fine tuned (to overcome the complexity induced by Bremsstrahlung, etc)

ECAL Saturation/Linear Range Study


ECAL dynamic range: H→di photon measurement

ECAL dynamic range: H→di photon measurement

Saturation vs InvMass

Saturation vs Resolution

At 10 mm Cell Size: Require the Dynamic range of at least 1k MIP...

25

Summary

- Analysis:
 - Profound understanding to H->WW/ZZ measurement. Will cover the remaining channels.
- Optimization:
 - Impact of VTX inner radius identified & studied.
 - Tracker: Separation is the main issue.
 - Calorimeter:
 - Active cooling free geometry studied.
 - For benchmarks with high energy leptons, no significant impact observed
 - NOT YET TO CONCLUDE: low energy objects, etc...
 - ECAL Saturation confirmed to be > 1k MIP

Backup

Reference Physics Channels

- VTX:
 - Br(H->bb, cc, gg) via Z->di muon channel
 - Br(H->di tau) via Z->di muon channel
- Tracker:
 - Higgs recoil mass analysis via Z->di muon
 - Br(H->di muon)
- Calorimeter
 - Br(H->di photon) (for ECAL intrinsic resolution & dynamic range)
 - Higgs recoil mass
 - Br(H->inv) via Z->di quark
 - Br(H->WW/ZZ) (Higgs width)

TPC Radius & ECAL resolution

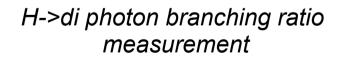
δ(Br×σ)/Br×σ % 05 25 σ_{ZH} precision m_{H} precision 25 6.5 20 5.5 15 10 4.5 0.1 0.12 0.14 1600 1800 $R_{\rm TPC}$ [mm]

 $\delta(Br \times \sigma)/Br \times \sigma vs \delta E/E$

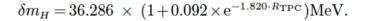
 $\mu^*\mu^:\mathbf{H}, \mathbf{H} \rightarrow \gamma\gamma$

 $\tau^*\tau^*H$, $H \rightarrow \gamma\gamma$

 $\rightarrow \nabla \nabla \mathbf{H}, \mathbf{H} \rightarrow \gamma \gamma$


 $\rightarrow q \overline{q} H, H \rightarrow \gamma \gamma$

pination result; Ldt= 5 ab⁻¹


0.18

Photon E resolution

0.2

0.16

$$\frac{\delta \sigma_{ZH}}{\sigma_{ZH}} = 0.485 \times (1 + e^{-0.094 \cdot R_{\rm TPC}})$$

 $\delta\sigma_{ZH}^{}/\sigma_{ZH}^{}$

0.95

0.9

0.85

1400