Progress of MDI

Sha Bai, Hongbo Zhu, <u>Qinglei Xiu</u>, Teng Yue, Yiwei Wang, Kai Zhu, Yingshun Zhu, Yin Xu, Dou Wang, Weichao Yao, Zhongjian Ma

> CEPC-SPPC Software Workshop 2016-8-29

- Tasks of MDI
 - IR lattice and layout design
 - Final Focusing magnets
 - Luminosity Measurement
 - Beam Induced Background Estimation
 - Detector shielding and radiation protection
 - Mechanics and integration
- Regular group meetings
 - Indico: <u>http://indico.ihep.ac.cn/category/323/</u>
 - Twiki:

cepc.ihep.ac.cn/~cepc/cepc_twiki/index.php/Machine_Detector_Interface

Sources of Beam induced Background

- Synchrotron radiation
 - Bending magnet, Quadrupoles
 - BDSIM (Geant4)
- Beam lost particles
 - Radiative Bhabha, Beam gas scattering
 - BBBrem ... \rightarrow SAD
- Beamstrahlung
 - Electron positron pairs, Hadrons
 - Guineapig++, Pythia6

Generator Information

Generator	Simulated Process	Physical Cut
BDSIM (Geant4)	Synchrotron radiation	Classical electrodynamics; Photon Energy > 1keV
BBBrem	Radiative Bhabah	Photon Energy > 2% of beam energy; Simulate very small scattering angle
SAD	Transport in accelerator	Beam pipe radius
GuineaPig++	Beamstrahlung	Pairs: energy > 5 MeV; Hadrons: Standard QCD physics in Pythia
Pythia6	γγ→Hadrons	Standard QCD physics: Ecm>2GeV, MSTP(14)=10

• The generated background samples covered the acceptance of the detector

Particle Flux in the Same Scale

5

Average Energy of Tracks

Properties of Beam Induced Background

- Most beam induced particles have very forward momentum
- The particle flux of synchrotron radiation is the highest
- The **energy** of the **beam lost particle** is the largest and similar with the beam energy
- The transverse momentum of hadrons from beamstrahlung is the largest
- The flux of background is influenced by the solenoid field
- Current study priority: synchrotron radiation > beam lost particle > beamstrahlung

- Mike Sulivan's code
 - Photon flux is calculated with geometry method.
 - Need other program to generate photon samples and simulate the interaction.
 - No detailed documents and manuals
 - Geometry definition is not convenient
 - Developed in Fortran. Further development is difficult for younger people.
- Decide to develop a new tool for synchrotron radiation study

- Core idea
 - Track charged particles in magnetic field and generate synchrotron photons
- The synchrotron radiation process has be implemented in Geant4.
- A convenient way to model the element and magnetic field of accelerator.
 - BDSIM: A particle tracking code for accelerator based on Geant4
 - Simulate the material and field of accelerator automatically by reading the lattice file.
- Developed new functions to extract synchrotron information from each step of Geant4

Validation of the New Method

• The results of BDSim are compared with theory and other standard code. The results are consistent with each other

CEPC-SPPC Workshop

Synchrotron from Bending Magnets

Horizontal

 In horizontal direction, synchrotron from bending magnets can be well suppressed by the collimators

- Power deposited at IP is about 25 W / (10cm) without collimators
- Power deposited at collimators are about 10 kW

- Synchrotron from quadrupoles are mainly caused by the beam halo
- Use a double Gaussian distribution to describe the beam distribution
 - Narrow Gaussian for beam core
 - Wide Gaussian for beam halo
 - $\sigma \downarrow x \uparrow halo = 3.4 \sigma \downarrow x \uparrow core; \sigma \downarrow y \uparrow halo = 10 \sigma \downarrow y \uparrow core$ (Round halo)
 - Fraction of beam halo: assumed to be 0.5%

9

Momentum Distribution of Beam Particles

- Twiss parameters $\Box \alpha = -1/2 \ d\beta(s)/ds$ $\Box \gamma = 1 + \alpha 12 \ \beta$
- $\sigma \downarrow x = \sqrt{\varepsilon \beta}$
- $\sigma \downarrow x \uparrow' = \sqrt{\varepsilon \gamma}$
- When α≠0, x and x?' are correlated in phase space

 $\Box \rho = -\alpha/\sqrt{1 + \alpha} 2$

 $\gamma x \hat{1}^2 + 2\alpha x x \hat{1}' + \beta x \hat{1}'^2 = \varepsilon$

Beam Halo in Phase Space

- Momentum distribution of beam particles are correlated with the position inside the bunch
- Try 3 correlation coefficient (>0, =0, <0) for halo particles

Flux of Synchrotron from Quadrupoles

- The beam halo should be well suppressed to reduced photons from quadrupoles
 - **Better vacuum, collimators**

Power from Different Conditions

Total Power

• The power from Halo is the average value of 3 cases

- Synchrotron Radiation might be the most important beam induced background at CEPC
- Developed a better tool to study the synchrotron radiation
- Synchrotron from bending magnets can be well suppressed by collimators
- Synchrotron from quadrupoles should be further suppressed in both accelerator and IR design
- Other backgrounds should also be kept on studying

Thank You

IR Layout -- Single Ring

- L* = 1.5m. To achieve higher luminosity, larger dynamic aperture.
- Many detailed problems are being considered based on this design.
 - Quadrupoles, anti-solenoid, compensating solenoid, luminosity measurement, shielding
- Level of beam induced background should be estimated to evaluate the design

IR Layout -- Partial Double Ring

- Crossing Angle = $30 \sim 40 mrad$
- QD0: 200 T/m, L* = 1.5m (Space limitation)
- Compensating solenoid: 13T (Nb₃Sn), 0.4m ($\int B \downarrow z \, ds = 0$)
- Some prototype study of magnets are in preparation
- Influence on the detector is under study