Beam-induced backgrounds in the CEPC 240 GeV CM energy interaction region

> Yanli Jin, Qinglei Xiu School of Physics, Nankai University, Tianjin

> > Aug 27, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

- Main sources of backgrounds
- The angular distribution of the whole detectors

- Analytical estimation of backgrounds
- Conclusion

Main sources of backgrounds

Beamstrahlung photons

- Coherent pair production
- Incoherent pair production

- $\gamma\gamma \rightarrow$ hadrons events
- Radiative bhabha
- Synchrotron radiation

Beamstrahlung photons

Beamstrahlung photons

• In e^+e^- collisions, the trajectory of the beam particles will be bent by the electromagnetic field of the other bunch, resulting in the emission of high-energy photons.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Coherent pair production

- Due to the beamstrahlung photons during collision, QED and QCD backgrounds are produced.
 - Coherent pair production
 - Incoherent pair production
 - $\gamma\gamma \rightarrow$ hadrons events
- Due to the strong fields during the collisions, photons from beamstrahlung interact with the coherent field of the oncoming bunch and produce e⁺e⁻ pairs.

Incoherent pair production

The direct interaction of two photons will also lead to the production of electron-positron pairs, including three main processes.

Others

- $\gamma\gamma \rightarrow$ hadrons events
- Radiative Bhabha
 - The collision of the electron-positron lead to the emission of a photon in the final state. $(e^+e^-\to e^+e^-\gamma)$
- Synchrotron radiation
 - Synchrotron radiation (SR) is electromagnetic radiation emitted by charged particles when they move at the speed close to that of light in a magnetic field.

- ♦ the last bending magnet
- ◊ the focusing quadrupole magnets

Summary

Expected beam-beam background rates per bunch crossing.

Background	CLIC	CEPC
Beamstrahlung photons	2.1 per beam particle	0.22 per beam particle
Coherent pairs	$6.6 imes10^8$	≈ 0
Trident pairs	$6.7 imes10^6$	×
Incoherent e^+e^- pairs	$3.3 imes10^5$	1693
Incoherent muons	12.5	×
$\gamma\gamma ightarrow { m hadrons}$	102 (3.2)	pprox 0.0022
Radiative Bhabha	$1.1 imes 10^5$	$1.0 imes10^4$
Synchrotron radiation	?	?

- Number of particles in one bunch is 3.71×10^{11} .
- \bullet The incoherent e^+e^- pairs is the dominant background induced by the beamstrahlung.
- \bullet Collimators or masks are needed to prevent IR from being hit directly by lost particles and SR photons.

Result

The angular distribution of the whole detectors.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Result

The angular distribution of the different background particles in the angular range of the half of the whole detector.

• The incoherent e^+e^- pairs and the particles from hadron events extend to a polar angle large enough to cause a large rate of hits in the tracking detectors.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

• So far only backgrounds that are directly produced at the IP were discussed.

The angular distribution in Lumical, VTX, FDisks.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

The angular distribution in Lumical, VTX, FDisks.

The angular distribution of background particles in the angular of the VTX

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Analytical estimation of backgrounds

- Hit density
- Total Ionising Dose (TID)
 - The estimated total ionising dose is the sum of all energy deposits in a given volume divided by its mass.
 - The TID can be roughly estimated according to the hit density in the detector.
- Non-Ionising Energy Loss (NIEL)
 - Factor from electron to 1 Mev neutron is about 0.1.
 - NIEL $\approx 3 \times 10^9 \text{ TID}$
 - Radiation damage can be caused by the Total Ionising Dose (TID) and Non-Ionising Energy Loss (NIEL) in silicon detectors.

Hit Density in the VTX

- * ロ * * 個 * * 注 * * 注 * ニ き … のへで

Conclusion

 Beam-induced backgrounds are very sensitive to the lattice design of accelerator, interaction region design and detector design.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Synchrotron radiation might be the most important backgrounds because the huge number of photons.
- Above all are need further study.