

CEPC-SPPC Physics-Software Meeting H->bb/cc/gg Branch Ratio Measurement in CEPC

Yu Bai (from Southeast University,

Nanjing)

On Behalf of CEPC Physics-Software

Study Group

August 30, 2016

Introduction: Benchmark Physics Process Measurement Overview

Physics Motivation

- Crucial to understand EW mechanism
 - Reason of fermions mass
 - Is there only one higgs boson?

- CEPC is ideal for such measurement
 - Clean background
 - Utility of recoil mass, free of higgs decay channel
 - High luminosity

One of the benchmark measurement in CEPC

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \rightarrow \ell^+ \ell^- X$	Higgs mass, cross section $PP(H \to a^{+}a^{-})$	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \rightarrow \mu^+ \mu$ $H \rightarrow b\bar{b}, c\bar{c}, gg$	$BR(H \to \mu^+ \mu^-)$ BR(H \to b\bar{b}, c\bar{c}, gg)	Vertex	$\oplus 1 \times 10^{-5}/(p_{\rm T}\sin\theta)$ $\sigma_{r\phi} \sim 5 \oplus 10/(p\sin^{3/2}\theta) \ \mu {\rm m}$
$H \rightarrow q\bar{q}, VV$	$BR(H \rightarrow q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3-4\%$
$H\to\gamma\gamma$	$BR(H \rightarrow \gamma \gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%$ (GeV)

Excellent flavor tagging capability required

Introduction: Signal Process

- ZH->II+jj (Zhenxing Chen)
 - ZH production with Z decay to muon pair, H decay to bb/cc quark or gluon pair
 - Very clean signal in muon pair invariant mass and recoil mass

· ZH->vv+jj(Yulei Zhang, Dikai Li, Hao Liang)

- Via ZH(~86%) or WW fusion(~14%)
- Clean background
- ZH->Multi-jet (Boyang Li, Yu Bai)
 - Both Z and Higgs decay hadronically •
 - Much larger cross section than semileptonic channel

Integral luminosity of 5000 fb⁻¹ is assumed in these study, corresponding to that of a few years of CEPC running

Analysis Outline

Event Preselection

	vvH Channel	IIH Channel	qqH Channel			
Dominant Background	WW/ZZ->semi-lep, quark pair production, Other Higgs Process	ZZ semi-lep, Other Higgs Processes	WW/ZZ hadronic, quark-pair production			
Discriminator	Missing Energy, Jets pair invariant/recoil masses, jet multiplicity(yth- value).	Missing Energy, Jets pair invariant/recoil masses, jet multiplicity(yth- value).				
Flavor Tagging	LCFIPlus: MVA flavor weight, Template fit or other methods					

The outcome currently interpreted in terms of $\sigma \times br$ with statistic uncertainty

ZH->II+jj Channel

Final states, 2 muons/electrons + 2 jets. Using invariant mass of muon pair, jet pair, and the recoil mass of muon pair

Recoil mass study see: http://indico.ihep.ac.cn/event/5592/contribution/7/material/slides/0.pdf

vv+jj Channel, Datasets and Event Pre-selection

Datasets:

Name	Statistics	weight	Note
vvH	5000fb ⁻¹	1	Full simulation
$(qq, e^+e^-, \mu^+\mu^-)H$	5000fb ⁻¹	1	Full simulation
$\tau^- \tau^+ H$	0	0	Not available
2fermions/4fermions	500fb ⁻¹	10	Fast simulation

Generator: Whizard, Simulation arbor Major SM background are with qqIn, qqnn and qq events

Event Pre-selection:

- Number of particles(PFO) >=20
- Visible Energy between 110 and 150 Ge
- Isolated electron and isolated muon veto
- y₁₂ between 0.15 and 1.0, y₂₃<0.06, y₃₄<0.008
- $\cos \theta$ between -0.98 and -0.4,
- BDT Cut

Event yields after Cut flow

Significance	70000	511	265.20	07	1071
BDT > -0.01	76666	344	118	69	1594
$0.98 < \cos(\theta_{\text{included}}^{(2\text{jets})}) < -0.4$	97277	5178	5365	33293	6273
$y_{34} < 0.008$	100117	6504	7878	58532	6899
$y_{23} < 0.06$	105078	6644	8456	69313	14495
$0.15 < y_{12} < 1$	111353	7405	9702	101797	19983
$70 < M_{\rm rec} < 125$	111886	7521	10045	110426	20458
$100 < M_{\rm inv} < 135$	117845	9506	10420	162511	21277
Isolation lepton veto	123586	33775	115867	327206	23773
$P_{T} > 19$	126006	34198	116314	627602	32300
$110 < E_{\text{total}} < 150$	132561	10M	125878	705357	34215
$N_{\text{PFO}(E>0.4\text{GeV})} > 20$	148808	23M	163088	3439927	58882
FSClasser output	148955	25M	183687	3698817	63194
Cut Definition	Sig.	qq	qqnn	qqln	xxh

Signal and xxh background ~ 5000/fb

qq,qqnn,qqln ~ 500/fb

Signal yields: 76.6k, background: 6.9k

Very high signal/background ratio

	Signal
LR > 0.165	6293

Background

10940

Much better than ILC Results: Likelihood ratio

Multi-jets Channel

Majority decay FS in HZ production Large Statistics

Datasets:

- Main background: Irreducible background from WW/ZZ and quark pair process
- Full simulation sample used
- Quark pair sample are filtered due to its huge cross section and low rate to passing the event selection

With 4 jets in final states, which two jets should be used to do template fit (from higgs) is *not* straightforward.

Event Selection and Cut flow

筛选条件	四喷注组合 并去除轻子	可见能量 >206GeV	y ₃₄ > 0.007	喷注粒子 数> 9	$\Delta \theta > 0.92$	X>0.21	BDT>-0.19
所有信号	493947	459972	393979	371240	318163	236652	211281
信号一bb	413299	381470	325137	305982	261808	197510	177447
信号一cc	19362	18690	15976	14903	12610	9562	8324
信号-gg	61286	59812	52866	50355	43745	29580	25510
所有背景	75M	50.6M	26.4M	21.4M	13.55M	3.15M	1.52M
希格斯背景	299534	109529	100813	82281	71987	38579	32653
四费米子强 子衰变	36.83M	28.19M	21.32M	18.78M	12.16M	2.2M	1.08M
两夸克	23.86M (250M)	20.37M	5.207M	2.601M	1.315M	907188	405567
四费米子半 轻子衰变	14.72M	1.967M	218394	27487	4745	3012	580

See Boyang's talk with detail

After event selection, the dominant background are WW/ZZ hadronic decay

Better than ILC Results: Likelihood ratio

LR > 0.375

166807

13726

Template Fit and ToyMC Results

$$L_{qq} = \frac{qq \ pair}{qq \ pair + neither \ is \ q} = \frac{x_q^1 \ x_q^2}{x_q^1 x_q^2 + (1 - x_q^1)(1 - x_q^1)} \ (qq = bb, cc)$$

CEPC Results

r_{bb}

r_{cc}

r_{gg}

ILC Results

1.000±0.

1.002±0.

0.998±0.

q puir ⊦ neither	$\frac{1}{is q} = \frac{1}{x_q^1 x_q^2 + q}$	$\frac{x_q x_q}{(1-x_q^1)(1-x_q^1)}$	$\overline{(qq = bb, cc)}$)				
e⁺e⁻H	µ⁺µ⁻H	vvH (2500 fb ⁻¹)	qqH	combined	Large uncertainty due to SM bkg			
00±0.013	1.000±0.009	0.997±0.006	1.000±0.003	1.000±0.002				
02±0.118	0.993±0.095	1.008±0.038	1.000±0.120	1.00±0.02	Comparable results in IIH channel			
98±0.106	0.991±0.070	1.020±0.019	1.001±0.189	1.00±0.01	Much better result in vvH channel Much worse results(for r_c and r_g) in qqH channel			

data

	$\nu \bar{\nu} H$	qqH	e^+e^-H	$\mu^+\mu^-H$	Comb.
r _{bb}	1.00 ± 0.02	1.00 ± 0.01	1.00 ± 0.04	1.00 ± 0.03	1.00 ± 0.01
r _{cē}	1.02 ± 0.11	1.01 ± 0.10	1.02 ± 0.27	1.01 ± 0.23	1.02 ± 0.07
r ₈₈	1.02 ± 0.14	1.02 ± 0.13	1.05 ± 0.33	1.02 ± 0.24	1.02 ± 0.09

Presented at ICHEP 2016

Yu Bai, On Behalf of CEPC Collaboration, from Southeast University

Abstract:

Analysis on H->bb/cc/gg in CEPC analysis is presented. The CEPC is an electron-positron collider, planned to work at √s = 250 GeV. An integral luminosity of 5000 fb⁻¹ is assumed, corresponding to ten-years of data taking in CEPC. Around 1 million higgs events will be collected, in which 70% of them will undergo hadronically higgs decay. The analysis focus on the e⁺e⁺->ZH production with Z decays to charged leptons, neutrinos and quark pairs.

Thanks for your hard working!

Event Selection Results:

00 N.	Signal	background with hipps	other SM beckground						
eH.	16479	3336	7808	Sand	beckground	other SM	Sanal	background	other SM
					with higgs	beckground		with higgs	background
	Signal	background with hipps	other SM background	76.665k	1.5Hk	5.31k	2118	327k	1.50M
	9415	1871	11122						

Tumplate of uppin 2D template constructed from b/c: tagging weight: Placture the Varia Unitation to get relation uncertainty from B/c Image: Image:

Conclusion:

The study on Higgs hadronic decay branch ratio measurement in CEPC is presented. Scenarios of ZH production with Z decay to lepton pair, neutrinos and quark pair undergo with cut-based or TMVA analysis, and the flavor components from Higgs decay are determined from template fit. Toy Monte-Cairo are implemented to calculate statistic uncertainty. Combining the three channels one gets 0.2%, 2% and 1% statistic uncertainty for n_{tex} number from template fit. Toy Monte-Cairo are with 5 ab ⁶ integral luminosity.

EightEquation Method

In jet pair production:

 $n_{b1} = \epsilon_{b1}^{b} N_{b} + \epsilon_{b1}^{c} N_{c} + \epsilon_{b1}^{l} N_{l} + N_{b1}^{bkg}$ $n_{b2} = \epsilon_{b2}^{b} N_{b} + \epsilon_{b2}^{c} N_{c} + \epsilon_{b2}^{l} N_{l} + N_{b2}^{bkg}$ $n_{b1,b2} = \epsilon_{b1}^{b} \epsilon_{b2}^{b} (1 + \rho_{b1,b2}^{b}) N_{b} + \epsilon_{b1}^{c} \epsilon_{b2}^{c} (1 + \rho_{b1,b2}^{c}) N_{c} + \epsilon_{b1}^{l} \epsilon_{b2}^{l} (1 + \rho_{b1,b2}^{l}) N_{l} + N_{b1,b2}^{bkg} \qquad N_{b} N_{c} N_{g} \dots \text{ numbers to work out}$ $n_{c1} = \epsilon_{c1}^b N_b + \epsilon_{c1}^c N_c + \epsilon_{c1}^l N_l + N_{c1}^{bkg}$ $n_{c2} = \epsilon_{c2}^b N_b + \epsilon_{c2}^c N_c + \epsilon_{c2}^l N_l + N_{c2}^{bkg}$ $n_{c1,c2} = \epsilon_{c1}^{b} \epsilon_{c2}^{b} (1 + \rho_{c1,c2}^{b}) N_{b} + \epsilon_{c2}^{c} \epsilon_{c2}^{c} (1 + \rho_{c1,c2}^{c}) N_{c} + \epsilon_{c1}^{l} \epsilon_{c2}^{l} (1 + \rho_{c1,c2}^{l}) N_{l} + N_{c1,c2}^{bkg}$ $n_{b1,c2} = \epsilon_{b1}^{b} \epsilon_{c2}^{b} (1 + \rho_{b1,c2}^{b}) N_{b} + \epsilon_{b1}^{c} \epsilon_{c2}^{c} (1 + \rho_{b1,c2}^{c}) N_{c} + \epsilon_{b1}^{l} \epsilon_{c2}^{l} (1 + \rho_{b1,c2}^{l}) N_{l} + N_{b1,c2}^{bkg}$ $n_{c1,b2} = \epsilon_{c1}^{b} \epsilon_{b2}^{b} (1 + \rho_{c1,b2}^{b}) N_{b} + \epsilon_{c1}^{c} \epsilon_{b2}^{c} (1 + \rho_{c1,b2}^{c}) N_{c} + \epsilon_{c1}^{l} \epsilon_{b2}^{l} (1 + \rho_{c1,b2}^{l}) N_{l} + N_{c1,b2}^{bkg}$

 n_{b1} ... observed number in each category

E ... Tagging efficiencies

 ρ ... Correlation between the 1st and 2nd jets tagging efficiency, typically of the order 0.1%-1%, but can be very large (~100%-1000%) for light jets

Mathematically similar to P.L.B 401(1997) 163-175 (High precision R_b measurement in ALEPH)

b/c tagging efficiencies from data-driven. No need to measure b/c tagging efficiency previously.

Systematic uncertainty of the method can be characterized by the parameter presumably set.

Systematic Uncertainty

 N_c and N_g are statistically strong correlated

- · Reasonable statistic uncertainty
- Uncertainty can be reduced by optimization(for Nc less than 10% without bkg and 11% with bkg)

Systematic Uncertainty

Impact of Correlation to the Results:

去掉的关联	Nb	B误差	Nc	C误差
۱	33677		₀ 1703	0
CL	33675	-6.5	_{E-05} 1612	-0.05322
CBB	33677	-8.9	_{E-05} 1692	-0.00639
BCL	33677	-5.9	_{E-05} 1694	-0.00513
CBC	33677	-3	_{E-05} 1698	-0.00286
BB	33723	0.001	1700 ₁₃₇₅	-0.00174
BCC	33677	-3	_{E-05} 1700	-0.0017
BC	33676	-3.9	_{E-05} 1703	4.7E-05
CBL	33677	2.97	_{E-05} 1707	0.002566
СС	33677	5.94	_{E-05} 1711	0.004885
BL	33525	-0.00	1713 ₁₄₅₂	0.005755
СВ	33677	8.91	_{E-05} 1716	0.007757
BCB	33682	0.000	1900 ₁₄₃	0.115514

Assuming 30% sys.uncertainty on BL,CL and 10% that of BCB

Systematic uncertainty from other correlation terms estimated from bias

For simplify one can only take the correlation terms with largest impact into account. But should use large MC sample to determine that.

Uncertainty		Nb	Nc	Ng
Statisitic		0.59%	11.1%	4.0%
System	BL	0.14%	0.18%	0.84
atic	CL	0.002%	2.2%	0.7%
uncerta	BCB	0.01	8.3%	2.8%
inty	other	0.14%	0.04%	0.89%
13 A		0.62%	14.0%	5.1%

Gluon/Quark Jet Seperation

Gluon jets fraction is crucial to H->bb/cc/ gg analysis

٠

- Complex phenomenon of gluon jets have impact on other final state measurement
- Good performance on b/c-tagging but not consider gluon-quark jet separation yet

Epfo*DeltaR(PFO to Jet)

Jet Broadening

Discrimination power shown. Need to implement to LCFIPIus

- Very nice work have been done on the CEPC benchmark measurement on H->bb/cc/gg analysis, as milestone. Something to do in each channel
 - ZH->II+jj, analysis with all SM background and apply more cuts to enhance signal/background ratio and reduce statistic uncertainty
 - In vv+jj channel, full simulation SM background should be used
 - In qqH->4jets channel, need to understand why ILC results are so different
- Methods other than template fit are studied
 - Inspiration from high precision R_b measurement
 - Statistic uncertainty are estimated; systematic uncertainty estimated in reasonable way
 - Impacts of gluon splitting on flavor tagging need to be study
- Flavor tagging will include gluon/quark jet separation to fix to the measurement

Template Fit in II+jj Channel

Templates and data

Fit target

Full Simulated Higgs and ZZ events

Template Fit in II+jj Channel: Toy MC Check

Fit works stable

MVA in vv+jj channel

(a) Cut efficiencies and optimal cut value.

Correlation Matrix (signal)

(b) Overtraining check for classifier.

Correlation Matrix (background)

Template fit in vv+jj channel

(a) The B-C Likeliness plot for $H \rightarrow b\bar{b}$

(c) The B-C Likeliness plot for $H \rightarrow g\bar{g}$

(b) The B-C Likeliness plot for $H \rightarrow c\bar{c}$

20^(d) The B-C Likeliness plot for $\ell\ell H$, $\nu\nu H$, qqH backgrounds

ToyMC Results in vv+jj channel

Statistics

Template ~ 2000/fb

Data ~ 500/fb

Non-Higgs background not included

