# Higgs invisible decay

Chen Zhenxing (PKU & IHEP) Mo Xin(IHEP)

# Introduction

 The Higgs bosons are produced via Higgsstrahlung(ZH), WW fusion and ZZ fusion at CEPC



250

300

2 350 √s [GeV]

150

200

#### Inclusive measurement !

# Introduction

- In SM, the Higgs has a chance of 1.06x10<sup>-3</sup> decaying to invisible products
- Many new physics models predict a significant branching ratio of Higgs to invisible
- LHC set an upper limit of 40%
- Higgs invisible decay is a sensitive probe for new physics
- A precise measurement is expected at an e<sup>+</sup>e<sup>-</sup> collider, the measurement potential of CEPC on Higgs invisible decay is studied

## Samples

Central of mass energy: 250 GeV

Beam energy spread: 0.16%

No polarized

Signal: full simulated with Arbor v3\_1 Higgs mass: 125 GeV

SM background: fast simulated, with momentum resolution and detection efficiency parameterized for different particle types

Luminosity: 5 ab-1



# Analysis of $Z \rightarrow \mu^+ \mu^-$

- (1) At least one pair of  $\mu^+\mu^-$  is reconstructed.
- (2) Recoiling mass of  $\mu^+\mu^-$ : 120 GeV <  $M_{\mu+\mu^-}^{\text{reco}}$  < 150 GeV
- (3) Invariant mass of  $\mu^+\mu^-$ : 80 GeV < M<sub> $\mu+\mu^-</sub>$  < 100 GeV</sub>



(4) Transverse momentum of Z boson candidate:  $P_T^Z > 20$  GeV

(5) The azimuthal angle difference between  $\mu^+$  and  $\mu^-$ :  $\Delta \phi < 175^{\circ}$ 



MVA:

Inputs:  $M_{\mu+\mu}$  $P_T^Z$  $\cos \theta_Z(\theta_Z \text{ is the polar angle of Z boson candidate)}$ acollinearity(the angle between  $\mu^+$  and  $\mu^-$ )





Signal: Crystal Ball Background: shape extracted from MC sample BDT optimized according to the ZH cross section precision Cross section precision: 0.92% Higgs mass precision: 6.52 MeV

# Cut flow

|                                                                  | ZH     | ZZ      | WW       | ZZorWW   | Single Z | Z(2f)     |
|------------------------------------------------------------------|--------|---------|----------|----------|----------|-----------|
| Total                                                            | 35247  | 5347053 | 44180832 | 17801222 | 7809747  | 418595861 |
| N <sub>μ+</sub> >=1, N <sub>μ-</sub> >=1                         | 95.73% | 11.95%  | 0.65%    | 3.92%    | 9.75%    | 1.64%     |
| 120GeV/c <sup>2</sup> <m<sub>rec&lt;150GeV/c<sup>2</sup></m<sub> | 93.19% | 1.71%   | 0.23%    | 0.70%    | 1.93%    | 0.17%     |
| $80 \text{GeV/c}^2 < M_{\mu+\mu} < 100 \text{GeV/c}^2$           | 85.47% | 0.68%   | 0.06%    | 0.22%    | 0.22%    | 0.10%     |
| P <sub>TZ</sub> >20GeV/c                                         | 80.22% | 0.57%   | 0.06%    | 0.17%    | 0.16%    | 0.02%     |
| φµ+-φµ- <175                                                     | 77.76% | 0.51%   | 0.05%    | 0.17%    | 0.15%    | 0.01%     |
| BDT cut                                                          | 65.48% | 0.26%   | 0.01%    | 0.05%    | 0.06%    | 0.01%     |
| 120GeV/c <sup>2</sup> <m<sub>rec&lt;140GeV/c<sup>2</sup></m<sub> | 65.33% | 0.26%   | 0.01%    | 0.05%    | 0.06%    | 0.01%     |

The main remaining backgrounds are Z(2f)

# Higgs invisible decay

sample

Varied fractions of Higgs invisible

decay are combined with the SM

Extra criteria: Only two charged tracks and no isolated photon The cross section of SM ZH is fixed

Br(H→inv)=50%: 1.16%

Entries/0.25 GeV [%]  $\delta\sigma_{ZH}, H 
ightarrow inv/\sigma_{ZH}, H 
ightarrow inv_{0}^{01}$ 1500 **CEPC Simulation** S+B Fit --- Signal ----- Background 1000 500 A 10<sup>-3</sup> **10<sup>-2</sup>** 120 125 130 135 10<sup>-1</sup> 140  $M_{\rm recoil}$  [GeV]  $\beta(H \rightarrow \text{inv.})$ 

# Analysis of $Z \rightarrow e^+e^-$

- (1) At least one pair of  $e^+e^-$  is reconstructed.
- (2) Large background from Bhabha. Polar angle of electron and positron:  $\cos\theta_{e^+}$ >-0.9  $\cos\theta_{e^-}$ <0.9



- (3) Recoiling mass of  $e^+e^-$ : 120 GeV <  $M_{e^+e^-}$  reco< 160 GeV
- (4) Invariant mass of  $e^+e^-$ : 80 GeV <  $M_{e^+e^-}$  < 100 GeV

Bremstrahlung recovery: the momentum of photon close to the electron or positron in Z candidate is added



- (5) Transverse momentum of Z boson candidate:  $P_T^Z > 20$  GeV
- (6) The azimuthal angle difference between  $e^+$  and  $e^-$ :  $\Delta \phi < 175^{\circ}$



#### MVA:

#### Inputs: $M_{e^+e^-}$ $P_T^{~Z}$ $\cos \theta_Z(\theta_Z \text{ is the polar angle of Z boson candidate})$ $\cos \theta_{e^+}(\theta_{e^+} \text{ is the polar angle of positron})$ acollinearity(the angle between e<sup>+</sup> and e<sup>-</sup>)



# Cut flow

|                                                                                              | ZH    | ZZ      | WW       | ZZorWW   | Z       | W        | ZorW    | Z(2f)     |
|----------------------------------------------------------------------------------------------|-------|---------|----------|----------|---------|----------|---------|-----------|
| total                                                                                        | 35247 | 5436373 | 44181064 | 17799208 | 7808854 | 17020374 | 1246802 | 418598154 |
| N <sub>e+</sub> >=1, N <sub>e-</sub> >=1<br>cosθ <sub>e+</sub> >-0.9,cosθ <sub>e-</sub> <0.9 | 28010 | 13615   | 16266    | 20105    | 574212  | 222811   | 626516  | 6594087   |
| 120GeV/c² <m<sub>rec&lt;160GeV/c²</m<sub>                                                    | 26437 | 903     | 1428     | 3667     | 122997  | 82943    | 156757  | 1204575   |
| 80GeV/c <sup>2</sup> <m<sub>e+e-&lt;100GeV/c<sup>2</sup></m<sub>                             | 22958 | 118     | 220      | 1497     | 45438   | 25050    | 53851   | 414026    |
| P <sub>TZ</sub> >20GeV/c                                                                     | 21574 | 85      | 166      | 1056     | 36414   | 22252    | 43108   | 263375    |
| φe+-φe- <175                                                                                 | 20908 | 64      | 157      | 986      | 33909   | 20613    | 41468   | 206862    |
| BDT cut                                                                                      | 14614 | 4       | 9        | 68       | 10961   | 3512     | 10085   | 37160     |

Signal efficiency: 41.46% The main remaining backgrounds are Z(2f)

### Higgs invisible decay

The cross section of SM ZH is fixed

Varied fractions of Higgs invisible

decay are combined with the SM

Extra criteria: Only two charged tracks and no isolated photon



# Analysis of $Z \rightarrow qq$

### Measurement via $Z \rightarrow qq$

#### **Pre-selection:**

Inclusive 2jets N<sub>PFO</sub>>10 Mvis<130 GeV/c<sup>2</sup>



### Measurement via $Z \rightarrow qq$

- Transverse momentum of Z boson candidate:  $P_T^Z > 20$  GeV
- The angle between two jets: acol> 50°



#### Measurement via $Z \rightarrow qq$

- Missing energy: 130 GeV < E<sub>miss</sub> <170 GeV</li>
- The invariant mass of two jets: 75 GeV < M<sub>ii</sub> < 100 GeV</li>



# Cut flow

|                                       | Signal | qqН  | vvH    | SM BKG   |
|---------------------------------------|--------|------|--------|----------|
| Pre-cut                               | 721232 | 8435 | 205822 | 69071903 |
| N <sub>lep</sub> =0                   | 710648 | 5738 | 188928 | 41315384 |
| 15< N <sub>PFO</sub> < 85             | 708747 | 5464 | 171283 | 39890767 |
| P <sub>T</sub> >20GeV/c               | 658280 | 5086 | 157211 | 3547505  |
| Acol > 50                             | 650532 | 4423 | 153950 | 1735168  |
| 130 GeV < E <sub>miss</sub> < 170 GeV | 629616 | 668  | 38430  | 620395   |
| 75 GeV < M <sub>jj</sub> < 100 GeV    | 571924 | 317  | 19503  | 484991   |
| 110 GeV < M <sub>reco</sub> < 150 GeV | 550989 | 287  | 16322  | 336582   |

## Higgs invisible decay

The cross section of SM ZH is fixed



# Summary

Based on a full simulated ZH sample of 5ab<sup>-1</sup>, the measurement potential of CEPC on Higgs invisible decay is investigated

With fixed SM ZH cross section, the invisible cross section precision under different invisible branching ratios are presented.

Assuming Br(H→inv)=50% e⁺e⁻: 1.31% µ⁺µ⁻: 1.16% qq: 0.42%

