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Introduction, Outline, Literature

Introduction to heavy-ion collisions
and relativistic viscous hydrodynamics
Motiviation and deriving the relativistic equations relevant for heavy-ion collisions

P. Romatschke New Developments in Relativistic Viscous Hydrodynamics (arXiv:0902.3663)

S. Jeon, U. Heinz Introduction to Hydrodynamics, Int.J.Mod.Phys. E24 (2015) 10, 1530010

C. Gale, S. Jeon, B. Schenke Hydrodynamic Modeling of Heavy-Ion Collisions, Int.J.Mod.Phys. A28 (2013) 1340011

Hydrodynamic description of heavy-ion collisions
Relevant references will appear in the lecture.
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Motivation
The main application of viscous relativistic hydrodynamics is the
description of the time evolution of heavy ion collisions
Other applications of (usually ideal) relativistic hydrodynamics include

1 The collapse of the core of a massive star in the course of a
supernova explosion: During its fall, the matter can reach
velocities up to 40 percent of the speed of light.

2 Jets - situations in which matter flows onto a compact body, and
some of the matter is flung away in a pair of tightly focused beams

3 Gamma-ray bursts: Theoretical models estimate that the matter
responsible for the gamma-ray burst emission must be travelling at
more than 99.99% of the speed of light

I will focus on heavy ion collisions because they
demand the most detailed understanding of

relativistic hydrodynamics, in particular the inclusion
of viscosities
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Motivation

Simulation: F. Hanke, A. Marek, B. Müller, H.-Th. Janka (MPI for Astrophysics)
Simulation Code: PROMETHEUS (3D Hydrodynamics)
http://www.mpcdf.mpg.de/services/visualization/rzgprojects

Neutrino-driven explosion of a
massive star
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Motivation

Simulation: C. Cuesta-Martinez, M. A. Aloy, and P. Mimica

http://arxiv.org/pdf/1408.1305v2.pdf

Gamma-ray burst - distribution of the rest-mass density
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Evolution of the Universe

The universe gets cooler!
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Evolution of the Universe

Reheating matter?
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Evolution of the Universe

Reheating matter?

Need temperatures ∼ 2× 1012 K
(Interior of the Sun: ∼ 107 K)
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Recreating the big bang on earth (almost)

We want to recreate the quark-gluon plasma
that existed 10−6 s after the big bang
Test the theory of Quantum-Chromo-Dynamics (QCD)
and understand fundamental properties of matter
Application to early universe studies

Build a bridge between
fundamental theory and
experiment
to learn about fundamental
matter and its interactions.

Relativistic hydrodynamic is one essential tool in achieving the above.
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QCD tells us: High temperature
→ deconfined quarks and gluons

Lattice calculation - rapid crossover
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Phase diagram of strongly interacting matter

GSI: www.gsi.de
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How to create a deconfined state of matter

Remember, we need to create temperatures of the order of 2× 1012 K
The speed of light is very large (3 · 108 m/s), so let’s use

E = mc2

Neither fusion nor fission are enough... (hydrogen bomb: 4.5× 107K)
What to do?
When not at rest, we have

E = γmc2 = mc2√
1−v2/c2

� mc2 if v ∼ c

ACCELERATE!
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Little bang machines

RHIC LHC
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How to see the little bang (RHIC)

PHENIX detector

STAR detector

Event in PHENIX

Event in STAR

Björn Schenke (BNL) Hefei School 2016 11 / 70



How to see the little bang (LHC)
ALICE detector

CMS detector

Event in ALICE

Event in CMS
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A heavy-ion collision

before collision

0 fm/c

pre-equilibrium

∼ 0.5 fm/c

quark-gluon-plasma

∼ 3− 5 fm/c
hadronization
hadr.rescattering

∼ 10 fm/c
freeze-out

detection

initial state
(e.g. color glass condensate)

thermalization (glasma state)

Hydrodynamics, Jet quenching, ...

Hydrodynamics
Hadronic transport

compare theory
to experiment
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Why use hydrodynamics?

Observations at the Relativistic Heavy-Ion Collider (RHIC) at
Brookhaven National Laboratory (BNL) have shown that the system
created in heavy-ion collisions behaves like a nearly perfect fluid
(not like a gas, as expected).

A perfect fluid is described by ideal
hydrodynamics.
A nearly perfect fluid is described
by viscous hydrodynamics with a
small viscosity to entropy density
ratio.

Comparison of ideal relativistic
hydrodynamics with experimental
data showed very good agreement.
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Hydrodynamics

Hydrodynamics is the conservation of energy and momentum.
The mean free path has to be shorter than the lengthscales of
interest.
To describe a significant part of the system with hydrodynamics, it
needs to be strongly coupled.
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Weakly coupled vs. strongly coupled system

2+1D CYM
(weakly coupled at late times)

Hydro
after τ = 0.2 fm/c (CYM before)

shown are energy density distributions
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Weakly coupled vs. strongly coupled system

2+1D CYM
(weakly coupled at late times)

Hydro
after τ = 0.2 fm/c (CYM before)

shown are energy density distributions
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Ideal hydrodynamics
(Pasi will do viscous)



A little thermodynamics

Before we derive the equations of hydrodynamics, let’s remind
ourselves of some basic thermodynamics which will be useful:
The differential of the internal energy of a system is given by:

dU = −PdV + TdS + µdN

work and heat transferred to the system

P : pressure
V : volume
T : temperature
µ: chemical potential
S: entropy
N : nonrel. system: number of particles
rel. system: e.g. net-baryon number
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A little thermodynamics

An extensive property is a property that changes when the size of the
sample changes.
Examples are mass, volume, length, and total charge

An intensive property is a bulk property and doesn’t change when
you take away some of the sample.
Examples include temperature, refractive index, and density
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A little thermodynamics

dU = −PdV + TdS + µdN

For a non-viscous fluid, the mechanical work done on the system may
be related to the pressure P and volume V .
The pressure is the intensive generalized force, while the volume is the
extensive generalized displacement:

δW = −PdV

This defines the direction of work, W , to be energy flow from the
working system to the surroundings, indicated by a negative term.
Taking the direction of heat transfer Q to be into the working fluid and
assuming a reversible process, the heat is

δQ = TdS
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A little thermodynamics

Energy U is an extensive function of the extensive quantities V, S,N :

U(λV, λS, λN) = λU(V, S,N)

Differentiate with respect to λ:

dU

d(λV )

d(λV )

dλ
+

dU

d(λS)

d(λS)

dλ
+

dU

d(λN)

d(λN)

dλ
= U

dU

dV
V +

dU

dS
S +

dU

dN
N = U

λ was set to one along the way...
use dU = −PdV + TdS + µdN and get

⇒ U = −PV + TS + µN
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A little thermodynamics
Differentiating

U = −PV + TS + µN

gives
dU = −PdV − V dP + TdS + SdT + µdN +Ndµ

using dU = −PdV + TdS + µdN yields the Gibbs-Duhem relation:

V dP = SdT +Ndµ

In hydrodynamics, densities (intensive quantities) are more useful:
ε = U/V : energy density
s = S/V : entropy density
n = N/V : baryon density

We obtain
ε = −P + Ts+ µn

and
dP = sdT + ndµ

⇒ dε = Tds+ µdn

Björn Schenke (BNL) Hefei School 2016 23 / 70



Remember these

ε+ P = Ts+ µn

and
dε = Tds+ µdn

These relations will be used when showing that ideal hydrodynamics
conserves entropy and can be used when deriving the equations of
viscous relativistic fluid dynamics.
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Equations of fluid dynamics

The fluid approximation:

Treat an ensemble of particles as a single fluid.
Compute ensemble’s mean velocity at each point u(r, t).
Lost information about the spread of velocities around that mean:
But if we have local thermodynamic equilibrium (LTE), that spread
is described by the temperature T (r, t)

LTE requires that particles are in equilibrium locally:
Mean free path needs to be smaller than any length scale of
interest.

Note: Shocks violate the fluid assumption: relevant length scales
become shorter than the mean free path.
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Equations of fluid dynamics

Conservation of mass:
Variation of mass in the volume V is due to in- and out-flow
through the surface ∂V :

∂

∂t

∫
ρdV = −

∫
∂V
ρu · ndA

Gauss’ theorem:
∂

∂t

∫
ρdV = −

∫
V
∇ · (ρu)dV

is true for all V , so:
∂tρ+ ∇ · (ρu) = 0

This is the continuity equation.

In the comoving frame this can be expressed with the Lagrange derivative dρ
dt

= ∂tρ+ u ·∇ρ
to read

dρ

dt
= −ρ∇ · u
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Equations of fluid dynamics

Conservation of momentum:
Momentum density is ρu. Same procedure as for the mass, but also
include the force from the outside fluid on the surface ∂V
(pressure p times area element ndA):

∂

∂t

∫
(ρu)dV = −

∫
∂V

(ρu)u · ndA−
∫
∂V
pI · ndA

Gauss’ theorem
∂

∂t

∫
(ρu)dV = −

∫
V
∇ · ((ρu)u + pI)dV

is true for all V :
∂t(ρu) + ∇ · ρuu + ∇p = 0

Using the continuity equation we can write

∂tu + u(∇ · u) = −1

ρ
∇p

This is the Euler equation. Lagrange form: du
dt

= − 1
ρ
∇p
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Relativistic hydrodynamics

In a relativistic system, mass density is not a good degree of freedom:
It does not account for kinetic energy which can be large for motions
close to the speed of light c.
So replace ρ by the total energy density ε.
Also, u does not transform correctly under Lorentz transformations and
should be replaced by the Lorentz four-vector

uµ =
dxµ

dT

We use gµν = diag(+−−−), dT is the proper time increment:

(dT )2 = gµνdx
µdxν = (dt)2 − (dx)2

= (dt)2

[
1−

(
dx

dt

)2
]

= (dt)2[1− u2]

where here and in the following c = kB = ~ = 1.
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Relativistic hydrodynamics - flow velocity

uµ =
dxµ

dT
=

dt

dT
dxµ

dt
=

1√
1− u2

(
1
u

)
= γ(u)

(
1
u

)
Local rest frame: uµ = (1,0).

uµ obeys the relation:

u2 = uµgµνu
ν = γ2(u)(1− u2) = 1

So, no need for an additional equation when replacing u by the uµ.
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Relativistic hydrodynamics - energy-momentum tensor

Ideal energy momentum tensor (no viscosity) has to be built from
the pressure p, the energy density ε, and uµ, as well as gµν .

Properties: symmetric, transforms like a Lorentz-tensor.
So the most general form is

Tµν = ε(c0g
µν + c1u

µuν) + p(c2g
µν + c3u

µuν)

Constraints:
T 00 = ε and T 0i = 0 and T ij = δijp in the local rest frame.
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Relativistic hydrodynamics - energy-momentum tensor

Tµν = ε(c0g
µν + c1u

µuν) + p(c2g
µν + c3u

µuν)

T 00 = ε and T 0i = 0 and T ij = δijp in the local rest frame.

T 00 = ε(c0 + c1) + p(c2 + c3) = ε

⇒ c0 = 1− c1 and c2 = −c3

T ij = −εc0δij − pc2δij = δijp

⇒ c0 = 0 and c2 = −1

⇒ c1 = 1 and c3 = 1

Tµν = εuµuν − p(gµν − uµuν)
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Relativistic hydrodynamics

Introduce ∆µν = gµν − uµuν - projector to the space orthogonal to uµ.
Then

Tµν = εuµuν − p∆µν

No external sources: Tµν is conserved:

∂µT
µν = 0

Björn Schenke (BNL) Hefei School 2016 32 / 70



Relativistic hydrodynamics
To identify equations of motion analogous to the non-relativistic ones,
project on directions parallel and perpendicular to uµ.
Parallel (show):

uν∂µT
µν = uµ∂µε+ ε(∂µu

µ) + εuνu
µ∂µu

ν − puν∂µ∆µν

= (ε+ p)∂µu
µ + uµ∂µε = 0

Perpendicular:

∆α
ν ∂µT

µν = εuµ∆α
ν ∂µu

ν −∆µα(∂µp) + puµ∆α
ν ∂µu

ν

= (ε+ p)uµ∂µu
α −∆µα∂µp = 0

Introducing D = uµ∂µ and ∇α = ∆µα∂µ, we can write

Dε+ (ε+ p)∂µu
µ = 0

(ε+ p)Duα −∇αp = 0

Fundamental equations for relativistic fluid dynamics
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Relativistic hydrodynamics
In the non-relativistic limit

Dε+ (ε+ p)∂µu
µ = 0

(ε+ p)Duα −∇αp = 0

can be related to the Euler and continuity equations.
If |u| � 1 one finds

D = uµ∂µ ' ∂t + u ·∇ +O(u2)

∇i = ∆iµ∂µ ' ∂i +O(|u|)
Imposing also a non-relativistic equation of state, where p� ε and
assume that energy density is dominated by mass density ε ' ρ,
we get

∂tρ+ u ·∇ρ+ ρ∇ · u = 0

ρ∂tu + ρu∇ · u−∇p = 0

... remember?
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Entropy conservation

In ideal hydrodynamics entropy is conserved.
Show that from ∂µT

µν = 0 and ∂µ(nuµ) = 0:

∂µT
µν = ∂µ((ε+ p)uµuν)− ∂µ(pgµν) = 0

⇔ ∂µ((ε+ p)uµ)uν + (ε+ p)uµ∂µu
ν − ∂νp = 0

×uν⇔ ∂µ((ε+ p)uµ) + (ε+ p)uµ uν∂µu
ν︸ ︷︷ ︸

=0

−uν∂νp = 0

⇔ uµ∂µ(ε+ p) + (ε+ p)∂µu
µ − uµ∂µp = 0

⇔ uµ∂µε+ (ε+ p)∂µu
µ = 0

Also

uµ∂µ(n) + n∂µu
µ = 0| × µ

uµµ∂µ(n) + µn∂µu
µ = 0

Björn Schenke (BNL) Hefei School 2016 35 / 70



Entropy conservation

Now subtract

uµµ∂µ(n) + µn∂µu
µ = 0

from

uµ∂µε+ (ε+ p)∂µu
µ = 0

⇒ uµ∂µε+ (ε+ p)∂µu
µ − µn∂µuµ︸ ︷︷ ︸

Ts∂µuµ

−uµµ∂µn = 0

⇔ Ts∂µu
µ + uµ∂µε− uµµ∂µn = 0

dε−µdn=Tds⇔ Ts∂µu
µ + Tuµ∂µs = 0| ÷ T

⇔ s∂µu
µ + uµ∂µs = ∂µ(suµ)= 0 ,

where suµ is the entropy current.

Björn Schenke (BNL) Hefei School 2016 36 / 70



Relativistic viscous hydrodynamics

Including dissipative (viscous) effects, we write

Tµν = Tµν(0) + Πµν

where Tµν(0) is the ideal part that we considered before.
Πµν is the viscous stress tensor.

In a system without conserved charges (or at µB = 0), all momentum
density is due to flow of energy density:

uµT
µν = εuν → uµΠµν = 0

In a more general system this corresponds to choosing the
Landau-Lifshitz frame
(local frame where the energy density is at rest)
alternativley, the Eckart frame is the frame where charge density (if there is one) is at rest.
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Relativistic viscous hydrodynamics

The equations of motion are obtained by projection of ∂µTµν as in the
ideal case:

uν∂µT
µν = Dε+ (ε+ p)∂µu

µ + uν∂µΠµν = 0

∆α
ν ∂µT

µν = (ε+ p)Duα −∇αp+ ∆α
ν ∂µΠµν = 0

We can simplify the first equation using
uν∂µΠµν = ∂µ(uνΠµν)−Πµν∂µuν = ∂µ(uνΠµν)−Πµν∂(µuν)

uνΠµν = 0 (frame)
∂µ = uµD +∇µ

Dε+ (ε+ p)∂µu
µ −Πµν∇(µuν) = 0

(ε+ p)Duα −∇αp+ ∆α
ν ∂µΠµν = 0

Fundamental equations for relativistic viscous fluid dynamics
Symmetrization A(µBν) = 1

2
(AµBν + AνBµ) not necessary but helpful later. Is ok here because Πµν is symmetric.
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...

I will end here and leave the detailed discussion of viscous relativistic
hydrodynamics to Pasi.
In my next lecture I will focus on the initial state for hydrodynamic
calculations in heavy ion collision scenarios.
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BACKUP
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Πµν from thermodynamics

Πµν has not been specified yet.
We can use the second law of thermodynamics to get it:
Entropy must always increase locally.
Basic relations for µB = 0:

ε+ p = Ts , Tds = dε

In covariant form the second law reads:

∂µs
µ ≥ 0 ,

with sµ = suµ. So,

∂µs
µ = Ds+ s∂µu

µ =
1

T
Dε+

ε+ p

T
∂µu

µ=
1

T
Πµν∇(µuν) ≥ 0

using Dε+ (ε+ p)∂µu
µ −Πµν∇(µuν) = 0
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Πµν from thermodynamics
We split Πµν into a traceless part and the rest:

Πµν = πµν −∆µνΠ.

Also introducing the traceless part of ∇(µuν),

∇<µuν> = 2∇(µuν) −
2

3
∆µν∇αuα

the second law becomes (see next slide):

∂µs
µ =

1

T
Πµν∇(µuν)=

1

2T
πµν∇<µuν> −

1

T
Π∇αuα ≥ 0

This is fulfilled by

πµν = η∇<µuν>, Π = −ζ∇αuα, η ≥ 0, ζ ≥ 0

because then we have a positive sum of squares.

∆µν∆µν = 3
∆µνπ

µν = πµµ − uµπµνuν = 0
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Πµν from thermodynamics
We now show that

∂µs
µ =

1

T
Πµν∇(µuν)=

1

2T
πµν∇<µuν> −

1

T
Π∇αuα ≥ 0

First
1

T
Πµν∇(µuν) =

1

2T
Πµν∇<µuν> +

1

3T
Πµν∆µν∇αuα

=
1

2T
πµν∇<µuν> −

1

2T
Π∆µν∇<µuν>

+
1

3T
πµν∆µν∇αuα︸ ︷︷ ︸

=0

− 1

3T
∆µν∆µνΠ∇αuα

=
1

2T
πµν∇<µuν> −

1

2T
Π∆µν∇<µuν> −

1

T
Π∇αuα

because

∆µν∆µν = (gµν − uµuν)(gµν − uµuν) = 4− 1− 1 + 1 = 3
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Πµν from thermodynamics

It remains to be shown that

1

2T
Π∆µν∇<µuν> = 0

∆µν∇<µuν> = ∆µν(2∇(µuν) −
2

3
∆µν∇αuα)

= 2∆µν∇(µuν) − 2∇αuα

= ∆µν(∇µuν +∇νuµ)− 2∇αuα

= (gµν − uµuν)(∇µuν +∇νuµ)− 2∇αuα

= ∇νuν +∇µuµ − 2∇αuα = 0

Thus

∂µs
µ =

1

T
Πµν∇(µuν) =

1

2T
πµν∇<µuν> −

1

T
Π∇αuα ≥ 0

Björn Schenke (BNL) Hefei School 2016 44 / 70



Relativistic Navier-Stokes equations

The non-relativistic Navier-Stokes equation is of the form

∂ui

∂t
+ uk

∂ui

∂xk
= −1

ρ

∂p

∂xi
− 1

ρ

∂Πki

∂xk

Πki = −η
(
∂ui

∂xk
+
∂uk

∂xi
− 2

3
δki

∂ul

∂xl

)
− ζδki∂u

l

∂xl

with the coefficients for shear viscosity η and bulk viscosity ζ.
So we can identify the equations

Dε+ (ε+ p)∂µu
µ −Πµν∇(µuν) = 0

(ε+ p)Duα −∇αp+ ∆α
ν ∂µΠµν = 0 ,

Πµν = πµν −∆µνΠ ,

and
πµν = η∇<µuν>, Π = −ζ∇αuα, η ≥ 0, ζ ≥ 0

as the relativistic Navier-Stokes equations.
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Shear and bulk viscosity

Shear viscosity describes the resistance to flow
Bulk viscosity describes the resistance to expansion
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Acausality problem of the rel. Navier-Stokes equations

Unlike the non-relativistic Navier-Stokes equations, the relativistic ones
exhibit acausal propagation.
Consider small perturbations to an equilibrium system at rest:

ε = ε0 + δε(t, x), uµ = (1,0) + δuµ(t, x)

(perturbation only depends on one space variable)
For α = y (transverse), the Navier-Stokes equation gives:

(ε+ p)Duy −∇yp+ ∆y
ν∂µΠµν = (ε0 + p0)∂tδu

y + ∂xΠxy +O(δ2) = 0

Πxy = η(∇xuy +∇yux)−
(
ζ +

2

3
η

)
∆xy∇αuα = −η∂xδuy +O(δ2)

Together, that gives

∂tδu
y − η

ε0 + p0
∂2xδu

y = O(δ2)
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Problem with relativistic Navier-Stokes equations

To investigate the individual modes of the diffusion process

∂tδu
y − η

ε0 + p0
∂2xδu

y = O(δ2)

we use a mixed Laplace-Fourier wave ansatz:

δuy(t, x) = e−ωt+ikxfω,k

This leads to the “dispersion relation”

ω =
η

ε0 + p0
k2

We get as the speed of diffusion of a mode with wave number k:

vT (k) =
dω

dk
= 2

η

ε0 + p0
k

As k grows, vT grows, eventually exceeding the speed of light.
Violates causality.
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Problem with relativistic Navier-Stokes equations

So what? Hydrodynamics is supposed to be an effective theory for
long wavelength modes (k → 0) anyway.
We could just not care about what happens at k � 1.

However, numerically the high k modes lead to instabilities:

Modes that travel faster than light in one Lorentz frame, travel
backwards in time in another.
Hydrodynamics is an initial value problem and requires well
defined set of initial conditions.
If modes travel backwards in time, the initial conditions cannot be
freely given. So one cannot solve the relativistic Navier-Stokes
equations numerically.

The diffusion speed exceeding the speed of light is a hint but no proof of causality violation.
See appendix in Romatschke, Int.J.Mod.Phys. E19 (2010) 1-53 for a proof.
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Fixing the relativistic Navier-Stokes eqs

One way to regulate the theory is to introduce a relaxation time τπ,
yielding the “Maxwell-Cattaneo law”:

τπ∂tΠ
xy + Πxy = −η∂xδuy

which replaces
Πxy = −η∂xδuy

This is useful because it leads to the modified dispersion relation

ω =
η

ε0 + p0

k2

1− ωτπ
For ω, k → 0, this equals the original dispersion relation.
For k � 1 vT is finite (show):

vmax
T = lim

k→∞

d|ω|
dk

=

√
η

(ε0 + p0)τπ
≤ 1 for all known fluids

Works great. But introduced by hand. Unsatisfactory.
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Second order viscous hydrodynamics
When we derived the relativistic Navier-Stokes equations using

∂µs
µ ≥ 0

we used the equilibirum entropy current sµ = suµ. But there are
dissipative corrections: use of the equilibrium sµ may not be good
approximation.
Including corrections to the entropy current

sµ = suµ − β0
2T

uµΠ2 − β2
2T

uµπαβπ
αβ +O(Π3)

with coefficients β0 and β2, one gets

παβ = η

(
∇<αuβ> − παβTD

(
β2
T

)
− 2β2Dπαβ − β2παβ∂µuµ

)
Π = ζ

(
∇αuα −

1

2
ΠTD

(
β0
T

)
− β0DΠ− 1

2
β0Π∂µu

µ

)
from the condition ∂µsµ ≥ 0.
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Derivation from kinetic theory

Alternatively, second order viscous hydrodynamics can be derived
from kinetic theory.
Short recap of kinetic theory:
The evolution of the one-particle distribution f(p,x, t) follows from
Liouville’s theorem (conservation of density in phase-space):

df

dT
=

dt

dT
∂tf +

dx

dT
·∇xf = 0

Using m dt
dT = mγ(v) = p0 and m dx

dT = mvγ(v) = p we get

pµ∂µf = 0

with pµpµ = m2.
Now, with collisions one gets the Boltzmann equation

pµ∂µf = −C[f ]← functional of f
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Derivation from kinetic theory

In equilibirum f = f0(p) and

pµ∂µf0 = 0 = −C[f0]

so C[f0] = 0.

Hydrodynamics corresponds to the limit where C is large
(short mean free path) and drives the system towards equilibrium.

Now, the relation between Tµν and f is given by

Tµν =

∫
d4p

(2π)3
pµpνδ(pµpµ −m2)2θ(p0)f(p, x)
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Derivation of ideal hydro from kinetic theory
Ultrarelativistic limit: m→ 0
Taking the first moment of the Boltzmann equation one finds∫

dχpνpµ∂µf(pµ, xµ) = −
∫
dχpνC[f ]

= ∂µ

∫
dχpνpµf(p, x) = ∂µT

µν

here we use
∫
dχ =

∫ d4p
(2π)3

δ(pµpµ)2θ(p0) =
∫ d3p

(2π)3E

When C conserves energy and momentum∫
dχpνC[f ] = 0

If Tµν can be interpreted as a fluid’s energy-momentum tensor (like it
can in equilibrium), this means that the first moment of the Boltzmann
equation corresponds to the fundamental equations of fluid dynamics:

∂µT
µν = 0
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Derivation of ideal hydro from kinetic theory

In the relativistic case it is better to write feq(pµuµ/T ) instead of f0(p)
(Lorentz invariance).

With that we can write

Tµν0 =

∫
dχpµpνfeq

(
pµuµ
T

)
= a20u

µuν + a21∆
µν

So a20 corresponds to energy density ε and −a21 to pressure p.

They can be computed by contraction of above expression with uµuν

and ∆µν respectively.

Their exact values depend on feq.
See calculation for Boltzmann statistics feq(pµu

µ/T ) = exp(−pµuµ/T )

Björn Schenke (BNL) Hefei School 2016 55 / 70



Viscous hydro from kinetic theory
Small deviation from equilibrium:

f(pµ, xµ) = feq(pµuµ/T )(1 + δf(pµ, xµ))

with δf � 1. So one can identify

Tµν = Tµν0 +

∫
dχpµpνfeqδf = Tµν0 + πµν

Momentum dependence of δf can be expressed in a Taylor series

δf(pµ, xµ) = c+ pαcα + pαpβcαβ +O(p3)

and is an algebraic function of ε, p, uµ, gµν , and πµν .
δf vanishes in equilibrium→ c = 0, cα = 0, cαβ = c2παβ so

πµν = παβc2I
µναβ

with Iµ1µ2...µn =
∫
dχpµ1pµ2 . . . pµnfeq
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Viscous hydro from kinetic theory
Iµναβ can be decomposed into Lorentz tensors:

Iµναβ = a40u
µuνuαuβ + a41(u

µuν∆αβ + perm.)

+ a42(∆
µν∆αβ + ∆µα∆νβ + ∆µβ∆να)

Because uµπµν = 0 and πµµ = 0, (∆µνπ
µν = 0), a40 and a41 vanish.

Contracting the indices on the RHS of

πµν = παβc2I
µναβ

we find
c2 =

1

2a42
and finally

f(pµ, xµ) = feq

(
pµuµ
T

)1 +

δf︷ ︸︸ ︷
1

2a42
pαpβπαβ
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Viscous hydro from kinetic theory

f(pµ, xµ) = feq

(
pµuµ
T

)[
1 +

1

2a42
pαpβπαβ

]
for a Boltzmann gas feq(x) = e−x and

a42 = (ε+ P)T 2

which follows from a calculation analogous to that of a20.
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Viscous hydro from kinetic theory
The first moment of the Boltzmann equation gave conservation of Tµν .

The integral ∫
dχpαpβC

does not trivially vanish (except in equilibrium).

So, the second moment of the Boltzmann equation∫
dχpαpβpµ∂µf = −

∫
dχpαpβC[f ]

will carry information on the non-equilibrium (viscous) dynamics.

From our earlier expansion of f , we find for the LHS∫
dχpαpβpµ∂µf = ∂µ

(
Iαβµ +

πγδ
2a42

Iαβµγδ
)

Using the second moment was a choice by Israel and Stewart (1979). Other moments could be used, leading to some ambiguity.
For analysis and improvements on this see e.g. Denicol, Molnar, Niemi, and Rischke, arXiv:1206.1554
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Viscous hydro from kinetic theory

Now, projecting on the part that is symmetric and traceless with

Pµναβ = ∆µ
α∆ν

β + ∆µ
β∆µ

α −
2

3
∆µν∆αβ

and doing the same for the RHS (assuming Boltzmann statistics) it
follows from the second moment of the Boltzmann equation that

πµν+
a52Tη

a242

[
∆µ
α∆ν

βDπ
αβ+Pµναβπ

φβ∇φuα+
2

3
πµν∂αu

α

]
= η∇<µuν>

The expression Pµναβπ
φβ∇φuα can be rewritten when introducing the

fluid vorticity
Ωαβ = ∇[αuβ]

where A[µBν] = 1
2(AµBν −AνBµ) is anti-symmetrization
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Viscous hydro from kinetic theory

One finds

Pµναβπ
φβ∇φuα = Pµναβ∆αγπφβ

[
Ωφγ +

1

2
∇<φuγ> +

1

3
∆φγ∇δuδ

]
= −2πφ(µΩ

ν)
φ +

πφ<µπν>φ
2η

+
2

3
πµν∇δuδ +O(δ3)

Finally we get

πµν+

τπ︷ ︸︸ ︷
a52Tη

a242

[
∆µ
α∆ν

βDπ
αβ+

4

3
πµν∇αuα−2πφ(µΩ

ν)
φ +

πφ<µπν>φ
2η

]
=η∇<µuν>

+O(δ2)

where τπ is the second order transport coefficient “relaxation time”.
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Viscous hydro from kinetic theory
Again, for k � 1 the “dispersion relation” for the diffusion equation
becomes

ω ≈ η

ε+ p

k2

ωτπ

We don’t know τπ if the underlying theory is unknown.
For a massless Boltzmann gas we get

τπ =
a52Tη

a242
=

3

2
π2

η

T 4

So

ω ≈

√
2

3

T 4

π2(ε+ p)
k =

√
1

6
k

such that vmax
T =

√
1
6 .

Studying long. velocity perturbations (sound) one finds vmax
L =

√
5
9 .

Bose-Einstein statistics lead to only small numerical modifications.
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Viscous hydro from kinetic theory
The final result

πµν+τπ

[
∆µ
α∆ν

βDπ
αβ+

4

3
πµν∇αuα−2πφ(µΩ

ν)
φ +

πφ<µπν>φ
2η

]
=η∇<µuν>

+O(δ2)

Müller (1976), Israel and Stewart (1979)

is different from what we found from the second law of thermodynamics

παβ = η

(
∇<αuβ> − παβTD

(
β2
T

)
− 2β2Dπαβ − β2παβ∂µuµ

)
which for a Boltzmann gas (β2 = τπ

2η = 3
4p ) reads

πµν + τπ

[
Dπµν +

4

3
πµν∇αuα

]
= η∇<µuν> +O(δ2)

where we used τπ/(ηT ) ∼ T−5 and
D lnT = D ln(ε1/4) = −1

3∇αu
α +O(δ2) (from Navier-Stokes).
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Viscous hydro from kinetic theory
Differences between the two equations vanish when contracted with
πµν , hence do not contribute to entropy production.
recall sµ = suµ − β0

2T u
µΠ2 − β2

2T u
µπαβπ

αβ

So the entropy-wise derivation could not capture the terms.

However, the terms are important:
Contraction with uµ gives zero for the kinetic theory result.
But leads to an unphysical constraint uµDπµν = 0 for the entropy res.
⇒ kinetic theory result is superior.

But

πµν+τπ

[
∆µ
α∆ν

βDπ
αβ+

4

3
πµν∇αuα−2πφ(µΩ

ν)
φ +

πφ<µπν>φ
2η

]
=η∇<µuν>

+O(δ2)

misses terms of second order in gradients
(because we don’t know the collision term).
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Consistent gradient expansion

ideal hydrodynamics: no gradients (0th order)

πµν = 0

Navier-Stokes equation: first order gradients

πµν = η∇<µuν>

Müller-Israel-Stewart theory: second order gradients

πµν = η∇<µuν> + τπ[∆µ
α∆ν

βDπ
αβ . . .] +O(δ2)

1 Zeroth order gradient expansion is complete (hydrodynamic
energy-momentum tensor is most general structure allowed by
symmetry)

2 First order is complete (see the following)
3 Second order Israel-Stewart theory is not complete.
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Consistent gradient expansion: first order

First order: independent gradients are ∂µuα and ∂µε.
(pressure is linked to ε by the equation of state)

Using ∂µ = ∇µ + uµD, all Duα, Dε can be expressed in terms of
space-like ∇µ. ⇒ Only the ∇µ are independent.

So the complete shear-stress tensor should have the structure

πµν = c4∇(µuν) + c5∆
µν∇αuα + c6u

(µ∇ν)ε

Landau-Lifshitz frame condition uµπµν = 0→ c6 = 0 (next slide)
No bulk viscosity: traceless πµν → c5 = −1

3c4 (next slide)
Choosing c4 = 2η one finds πµν = η∇<µuν> (next slide)

Navier-Stokes equation is complete first order gradient expansion.
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Consistent gradient expansion: first order

πµν = c4∇(µuν) + c5∆
µν∇αuα + c6u

(µ∇ν)ε

Landau-Lifshitz frame condition uµπµν = 0:
First term: uµ 1

2(∇µuν +∇νuµ) = 1
2uµ∇

µuν + 1
2uµ∇

νuµ

uµ∇µuν = 0 because uµ ⊥ ∇µ and uµ∇νuµ = 0 because
uµ∇νuµ = 1

2∇
ν(uµu

µ) = 0
Second term: uµ∆µν = uµ(gµν − uµuν) = uν − uν = 0
Third term: does not vanish→ c6 = 0

No bulk viscosity: traceless πµν :
c4

1
2(∇µuµ +∇µuµ) + c5∆

µ
µ∇αuα = 0

⇔ c4∇µuµ + c5(3)∇µuµ = 0
→ c5 = −1

3c4

Choosing c4 = 2η one finds
πµν = 2η∇(µuν) − 2

3∆µν∇αuα = η∇<µuν>
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Consistent gradient expansion: second order

Second order: obviously more terms.
For now: Restrict number by assuming conformal symmetry.

In curved space there are 8 contributions of second order that obey
πµµ = 0 and uµπµν = 0.

Only 5 of them transform homogeneously under Weyl rescalings
(obey conformal symmetry).
Baier, Romatschke, Son, Starinets, Stephanov, JHEP 0804, 100 (2008)
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Consistent gradient expansion: second order

The most general expression to second order in gradients in curved
space for a conformal theory is

πµν = η∇<µuν> − τπ
[
∆µ
α∆ν

βDπ
αβ +

4

3
πµν(∇αuα)

]
+
κ

2

[
R<µν> + 2uαR

α<µν>βuβ

]
− λ1

2η2
π<µλπ

ν>λ − λ2
2η
π<µλΩν>λ − λ3

2
Ω<µ
λ Ων>λ

where Rαβγδ is the Riemann tensor, Rµν the Ricci tensor, and
τπ, κ, λ1, λ2, λ3 are five independent second order transport
coefficients.
Baier, Romatschke, Son, Starinets, Stephanov, JHEP 0804, 100 (2008)

When are these additional terms relevant?
Exact formalism for relativistic causal viscous hydrodynamics
is not settled.
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More terms.

And that was just the shear part.
Additional equations for heat flow and bulk (volume) viscosity in a
non-conformal fluid.
see Betz, Henkel and Rischke J.Phys.G G36, 064029 (2009)

See Denicol, Koide, Rischke, Phys.Rev.Lett. 105, 162501 (2010)
for an alternative way of deriving second order viscous hydrodynamics
from kinetic theory (leads to different coefficients).

What is often used in simulations of heavy-ion collisions is

πµν + τπ

[
∆µ
α∆ν

βDπ
αβ +

4

3
πµν∇αuα

]
=η∇<µuν>

but more terms should be included and studied (and are).
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