

Equation of state

Pasi Huovinen
Uniwersytet Wrocławski

Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Dec 14, 2016, University of Science and Technology of China, Hefei, China

The speaker has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665778 via the National Science Center, Poland, under

Equation of state in form

$$
P=P(\epsilon, n)
$$

needed to close the system of hydrodynamic equations

Remark: $P=P(\epsilon, n)$ is not a complete equation of state in a thermodynamical sense.

A complete equation of state allows to compute all thermodynamic variables.
For example, $s=s(\epsilon, n): \mathrm{d} s=1 / T \mathrm{~d} \epsilon-\mu / T \mathrm{~d} n$ (1st law of thermod.)

$$
\frac{1}{T}=\left.\frac{\partial s}{\partial \epsilon}\right|_{n}, \quad \frac{\mu}{T}=-\left.\frac{\partial s}{\partial n}\right|_{\epsilon}, \quad P=T s+\mu n-\epsilon
$$

$P=P(\epsilon, n)$ does not work!

$$
\left.\frac{\partial P}{\partial \epsilon}\right|_{n}=\left.? \quad \frac{\partial P}{\partial n}\right|_{\epsilon}=?
$$

However, $P=P(T, \mu)$ does work!

$$
\mathrm{d} P=s \mathrm{~d} T+n \mathrm{~d} \mu \quad \Rightarrow \quad s=\left.\frac{\partial P}{\partial T}\right|_{\mu}, \quad n=\left.\frac{\partial P}{\partial \mu}\right|_{T}
$$

Nuclear phase diagram

- Oth approximation for equation of state at $\mu_{B}=n_{B}=0$:
- Hadronic phase: ideal gas of massless (boltzmann) pions, $g_{\pi}=3$

$$
\begin{aligned}
\epsilon_{\pi} & =\frac{3 g_{\pi}}{\pi^{2}} T^{4} \\
P_{\pi} & =\frac{g_{\pi}}{\pi^{2}} T^{4}=\frac{1}{3} \epsilon_{\pi}
\end{aligned}
$$

- Partonic phase: ideal gas of partons
+ bag constant of the bag model, B

$$
\begin{aligned}
\epsilon_{Q G P} & =\frac{3 g_{Q G P}}{\pi^{2}} T^{4}+B \\
P_{Q G P} & =\frac{g_{Q G P}}{\pi^{2}} T^{4}-B=\frac{1}{3} \epsilon_{Q G P}-\frac{4}{3} B
\end{aligned}
$$

- Number of DOF in partonic phase:

2 quark flavours and gluons $\Rightarrow g_{Q G P}=40$

- Gibbs criterion: $P_{Q G P}\left(T_{c}\right)=P_{\pi}\left(T_{c}\right)$

$$
\Rightarrow T_{c}=\left(\frac{\pi^{2}}{g_{Q G P}-g_{\pi}}\right)^{\frac{1}{4}} B^{\frac{1}{4}}
$$

- First order phase transition:

QCD equation of state

lattice QCD (Karsch \& Laermann, hep-lat/0305025):

- EoS from first principles
lattice QCD: Budapest-Wuppertal collaboration, arXiv:1309.5258:

- Trace anomaly

$$
\frac{\epsilon-3 P}{T^{4}}
$$

lattice QCD: Budapest-Wuppertal collaboration, arXiv:1309.5258:

- obtain pressure via

$$
\frac{P}{T^{4}}-\frac{P_{0}}{T_{0}^{4}}=\int_{T_{0}}^{T} \mathrm{~d} T^{\prime} \frac{\epsilon-3 P}{T^{\prime 5}}
$$

- What is $P\left(T_{0}\right)$?

Lattice vs. HRG

- Lattice agrees with Hadron Resonance Gas at low T

Hadron Resonance Gas model

- Dashen-Ma-Bernstein: Phys. Rev. 187, 345 (1969) EoS of interacting hadron gas well approximated by non-interacting gas of hadrons and resonances

$$
P(T, \mu)=\sum_{i} \frac{ \pm g_{i}}{(2 \pi)^{3}} T \int \mathrm{~d}^{3} p \ln \left(1 \pm e^{-\frac{\sqrt{p^{2}+m^{2}}-\mu_{i}}{T}}\right)
$$

- valid when
- interactions mediated by resonances
- resonances have zero width
- Prakash \& Venugopalan, NPA546, 718 (1992): experimental phase shifts
- Gerber \& Leutwyler, NPB321, 387 (1989): chiral perturbation theory
\Rightarrow HRG good approximation at low temperatures
\rightarrow lattice should reproduce HRG at $T \leq 120-140 \mathrm{MeV}$
\rightarrow and it does

End of evolution I

- when fluid dynamical description breaks down, so-called freeze-out \rightarrow convert fluid to particles
- energy conservation iff EoS is the same before and after freeze-out
- in HRG this is by definition true

End of evolution II

- Particle ratios $\Longleftrightarrow T \approx 160-170 \mathbf{M e V}$ temperature
- p_{T}-distibutions $\Longleftrightarrow T \approx 100-140 \mathrm{MeV}$ temperature
\Rightarrow Evolution out of chemical equilibrium

Chemical non-equilibrium

- Treat number of pions, kaons etc. as conserved quantum numbers below $T_{c h}$ (Bebie et al, Nucl.Phys.B378:95-130,1992)
- number of pions: thermal pions + everything from decays:

$$
\hat{n}_{\pi}=n_{\pi}+2 n_{\rho}+n_{\Delta}+\cdots
$$

- entropy per "pion", "kaon" etc. conserved

$$
\begin{aligned}
\frac{\hat{n}_{\pi}}{s}\left(T,\left\{\mu_{i}\right\}\right) & =\frac{\hat{n}_{\pi}}{s}\left(T_{c h}, 0\right) \\
\frac{\hat{n}_{K}}{s}\left(T,\left\{\mu_{i}\right\}\right) & =\frac{\hat{n}_{K}}{s}\left(T_{c h}, 0\right) \\
& \vdots
\end{aligned}
$$

Chemical non-equilibrium

- Treat number of pions, kaons etc. as conserved quantum numbers below $T_{c h}$ (Bebie et al, Nucl.Phys.B378:95-130,1992)
- $P=P\left(\epsilon, n_{b}\right)$ changes very little, but $T=T\left(\epsilon, n_{b}\right)$ changes. . .

Procedure for EoS

- HRG below $T \approx 160-170 \mathbf{M e V}$
- Parametrize lattice using:

$$
\frac{\epsilon-3 P}{T^{4}}=\frac{d_{2}}{T^{2}}+\frac{d_{4}}{T^{4}}+\frac{c_{1}}{T^{n_{1}}}+\frac{c_{2}}{T^{n_{2}}}
$$

Procedure for EoS

- HRG below $T \approx 160-170 \mathbf{M e V}$
- Parametrize lattice using:

$$
\frac{\epsilon-3 P}{T^{4}}=\frac{d_{2}}{T^{2}}+\frac{d_{4}}{T^{4}}+\frac{c_{1}}{T^{n_{1}}}+\frac{c_{2}}{T^{n_{2}}}
$$

- Require that:

$$
\left.\frac{\epsilon-3 P}{T^{4}}\right|_{T_{0}},\left.\quad \frac{\mathrm{~d}}{\mathrm{~d} T} \frac{\epsilon-3 P}{T^{4}}\right|_{T_{0}},\left.\quad \frac{\mathrm{~d}^{2}}{\mathrm{~d} T^{2}} \frac{\epsilon-3 P}{T^{4}}\right|_{T_{0}} \quad \text { are continuous }
$$

$\Longrightarrow T_{0}, c_{1}, c_{2}$ fixed

- χ^{2} fit to lattice above $T_{0} \mathbf{M e V}$

Final result, P / T^{4}

Nuclear phase diagram

Taylor expansion for pressure

$$
\frac{P}{T^{4}}=\Sigma_{i, j} c_{i j}(T)\left(\frac{\mu_{B}}{T}\right)^{i}\left(\frac{\mu_{S}}{T}\right)^{j}
$$

where

$$
c_{i j}(T)=\frac{1}{i!j!} \frac{\partial^{i}}{\partial\left(\mu_{B} / T\right)^{i}} \frac{\partial^{j}}{\partial\left(\mu_{S} / T\right)^{j}} \frac{P}{T^{4}},
$$

i.e. moments of baryon number and strangeness fluctuations and correlations

- an EoS based on lattice calculations of these?

But: Only limited set extrapolated to continuum

Parametrization

$$
c_{i j}(T)=\frac{a_{1 i j}}{\hat{T}^{n_{1 i j}}}+\frac{a_{2 i j}}{\hat{T}^{n_{2 i j}}}+\frac{a_{3 i j}}{\hat{T}^{n_{3 i j}}}+\frac{a_{4 i j}}{\hat{T}^{n_{4 i j}}}+\frac{a_{5 i j}}{\hat{T}^{n_{5 i j}}}+\frac{a_{6 i j}}{\hat{T}^{n_{6 i j}}}+c_{i j}^{S B},
$$

where $n_{k i j}$ are integers with $1<n_{k i j}<42$, and

$$
\hat{T}=\frac{T-T_{s}}{R}
$$

with $T_{s}=0.1$ or 0 GeV , and $R=0.05$ or 0.15 GeV .

Constraints:

$$
\begin{aligned}
c_{i j}\left(T_{\mathrm{sw}}\right) & =c_{i j}^{\mathrm{HRG}}\left(T_{\mathrm{sw}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} T} c_{i j}\left(T_{\mathrm{sw}}\right) & =\frac{\mathrm{d}}{\mathrm{~d} T} c_{i j}^{\mathrm{HRG}}\left(T_{\mathrm{sw}}\right) \\
\frac{\mathrm{d}^{2}}{\mathrm{~d} T^{2}} c_{i j}\left(T_{\mathrm{sw}}\right) & =\frac{\mathrm{d}^{2}}{\mathrm{~d} T^{2}} c_{i j}^{\mathrm{HRG}}\left(T_{\mathrm{sw}}\right) \\
\frac{\mathrm{d}^{3}}{\mathrm{~d} T^{3}} c_{i j}\left(T_{\mathrm{sw}}\right) & =\frac{\mathrm{d}^{3}}{\mathrm{~d} T^{3}} c_{i j}^{\mathrm{HRG}}\left(T_{\mathrm{sw}}\right)
\end{aligned}
$$

at $T_{\mathrm{sw}}=155 \mathrm{MeV}$
3rd derivative to quarantee smooth behaviour of speed of sound:

$$
c_{s}^{2} \propto \frac{\mathrm{~d}^{2}}{\mathrm{~d} T^{2}} c_{i j}
$$

P / T^{4}

$$
P / T^{4}
$$

Speed of sound

- s95p-v1 parametrization by P. Petreczky and P.H.

Speed of sound

Speed of sound

Speed of sound

Transverse expansion and flow

- Define speed of sound c_{s} :

$$
c_{s}^{2}=\left.\frac{\partial P}{\partial \epsilon}\right|_{s / n_{b}}
$$

- large $c_{s} \Rightarrow$ "stiff EoS"
- small $c_{s} \Rightarrow$ "soft EoS"
- For baryon-free matter in rest frame

$$
(\epsilon+P) D u^{\mu}=\nabla^{\mu} P \quad \Longleftrightarrow \quad \frac{\partial}{\partial \tau} u_{\mu}=-\frac{c_{s}^{2}}{s} \partial_{\mu} s
$$

\Rightarrow The stiffer the EoS, the larger the acceleration

Blast wave

(Siemens and Rasmussen, PRL 42, 880 (1979))

- Freeze-out surface a thin cylindrical shell radius r, thickness $\mathrm{d} r$, expansion velocity v_{r}, decoupling time $\tau_{\text {fo }}$, boost invariant
- Cooper-Frye for Boltzmannions

$$
\frac{\mathrm{d} N}{\mathrm{~d} y p_{T} \mathrm{~d} p_{T}}=\frac{g}{\pi} \tau_{\text {fo }} r m_{T} \mathrm{I}_{0}\left(\frac{v_{r} \gamma_{r} p_{T}}{T}\right) \mathrm{K}_{1}\left(\frac{\gamma_{r} m_{T}}{T}\right)
$$

effect of temperature and flow velocity

- The larger the temperature, the flatter the spectra
- The larger the velocity, the flatter the spectra \Rightarrow blueshift
- The heavier the particle, the more sensitive it is to flow (shape and slope)

EoS vs. T_{fo}

- hard EoS \Leftrightarrow high $T_{\text {fo }}$
- soft $\mathrm{EoS} \Leftrightarrow$ low T_{fo}

- $T_{\mathrm{fo}} \approx 120 \mathrm{MeV}$ (bag), $T_{\mathrm{fo}} \approx 130 \mathrm{MeV}$ (lattice)

v_{2} and EoS

- ideal hydro, $\mathbf{A u}+\mathbf{A u}$ at $\sqrt{s_{N N}}=200 \mathbf{G e V}$

- s95p: $T_{\text {dec }}=140 \mathrm{MeV}$
- EoS Q: first order phase transition at $T_{c}=170 \mathrm{MeV}, T_{\text {dec }}=125 \mathrm{MeV}$
- $v_{2}\left(p_{T}\right)$ of protons sensitive to phase transition!

v_{2} and EoS

- ideal hydro, $\mathbf{P b}+\mathbf{P b}$ at $\sqrt{s_{N N}}=18 \mathbf{G e V}$

- $T_{\mathrm{fo}} \approx 120 \mathrm{MeV}$ (bag)
- $T_{\mathrm{fo}} \approx 130 \mathrm{MeV}$ (lattice)
- protons no longer sensitive to phase transition!

Global analysis

- fit to p_{T}, v_{n}, multiplicities etc.

- Bayesian analysis using emulators

