

Measurement of Hadron Form Factor at BESIII

Bingxin Zhang On behalf of BESIII Collaboration

中高能物理大会2017年5月5日-9日 湖北宜昌三峡大学

Outline

- **1** Introduction
- **② BESIII experiment**
- ③ Measurement of hadron form factor
- **④** Summary and prospect

Motivation

The valence-quark picture of proton in quark model: The dynamic structure of proton can be measured in two processes:

Up quark

Vector current of the interaction vertex with hadronic structure

$$F_{\mu}(p',p) = \gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_n}F_2(q^2)$$

Structure functions F_1 and F_2 can be recombined into two form factors

- Electronic: $G_E(q^2) = F_1(q^2) + \tau \kappa_p F_2(q^2)$ $\tau = \frac{q^2}{4m_p^2}$, $\kappa_p = \frac{g_p 2}{2} = \mu_p 1$ Magnetic: $G_M(q^2) = F_1(q^2) + \kappa_p F_2(q^2)$

More directly perceived through the senses, G_E and G_M relate to the spatial distribution of charge and magnetization in Breit frame,

e.g, the charge density distribution.
$$\rho(\vec{r}) = \int \frac{d^3q}{2\pi^3} e^{-i\vec{q}\cdot\vec{r}} \frac{M}{E(\vec{q})} G_E(\vec{q}^2)$$
 3

Two methods						
For time-like process						
e		$e^{-\gamma}$ N				
	$\gamma^*(q)$	$\gamma^*(q)$				
S		s 0000 Y				
e^+ $s = q^2$ $$						
		$x \equiv 2E_{\gamma}/\sqrt{s}$ IN (
	Energy Scan	Initial State Radiation				
E _{beam}	discrete	fixed				
\mathcal{L}	low at each beam energy high at one beam energy					
σ	$\frac{d\sigma_{\boldsymbol{p}\overline{\boldsymbol{p}}}}{d(\cos\theta)} = \frac{\alpha^2\beta C}{4q^2} [G_M ^2 (1+\cos^2\theta)]$	$rac{d^2 \sigma_{p\overline{p}\gamma}}{dx d heta_{\gamma}} = W(s, x, heta_{\gamma}) \sigma_{p\overline{p}}(q^2)$				
	$+\frac{4m_p^2}{q^2} G_E ^2\sin^2\theta]$	$W(s, x, heta_{\gamma}) = rac{lpha}{\pi x} (rac{2-2x+x^2}{\sin^2 heta_{\gamma}} - rac{x^2}{2})$				
q^2	single at each beam energy	from threshold to <i>s</i>				

BEPCII storage rings

Double-ring e⁺e⁻ collider

- ✓ Beam energy : 1.0 -2.3GeV
- ✓ Crossing angle: 11 mrad
- ✓ Design Luminosity:1X10³³cm⁻²s⁻¹
- ✓ Achieved the goal
- ✓ Energy spread: 5.16X10⁻⁴
- ✓ Optimum energy:1.89 GeV

BESIII detector

MDC: main drift chamber (60%He +40% propane)
 TOF: time of flight (two layer plastic scintillators)
 EMC: electronic magnetic calorimeter(CsI(TI))
 MUC: muon system (resistive plate chambers)

Performance :

Expt.	MDC wire resolution	MDC dE/dx resolution	EMC Energy resolution	TOF time resolution
CLEO	110um	5%	2.2-2.4%	CDF 100ps
BABAR	125um	7%	2.67%	Belle 90ps
Belle	130um	5.6%	2.2 %	
BESIII	115um	<5%	2.3%	BESIII 80ps(Barrel)
				110ps (ETOF)

BESIII data sample

Phase 1: test run at 2012 Ecm =[2.2324-3.400]GeV 4 energy points ~12 /pb

Phase 2: fine scan for heavy charm resonant at 2013-2014 Ecm=[3.850,4.590] GeV 104 energy points 800 /pb.

Phase 3: R & QCD scan at 2015 Ecm=[2.00-3.080]GeV 21 energy points ~ 550 /pb

Measurement of pion Form Factor

$e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$

π - μ Separation

Cross checked for different TMVA methods

2017/5/7

Data vs. MC comparison

Event yield $\mu\mu\gamma$ after π - μ separation (ANN)

Impact on Hadronic Vacuum Polarization

Good agreement found with KLOE ! BESIII confirms the deviation at 3... 4 sigma level !!! Phy. Lett. B753 (2016) 629-632

Measurement of proton Form Factor

 $e^+e^- \rightarrow p\bar{p}$

Extraction of $\sigma^{Born}(ee \rightarrow p\overline{p})$ and |G| for each scan point:

Overall uncertainty improved by 30%

Extraction of R_{em} = |G_E/G_M| and |G_M|

• From a 2-parameter fit to the proton angular distribution in center-of-mass:

$$\frac{dN}{\epsilon \cdot (1+\delta) \cdot d\cos\theta_p} = N_{\text{norm}} \left[|G_M|^2 \times \left[\frac{q^2}{4M_p^2} \cdot (1+\cos\theta_p^2) + R^2 \sin\theta_p^2 \right] \right]$$
$$N_{norm} = \frac{2M_p^2 \cdot L \cdot \hbar c \cdot \pi \alpha^2 \cdot \beta C}{q^4}$$

From the measurement of the expectation value (method of moments):

$$<\cos^{2}\theta_{p}>=\frac{N_{norm}\cdot|G_{M}|^{2}}{N_{tot}}\int\epsilon\cdot(1+\delta)\cdot[\frac{q^{2}}{4M_{p}^{2}}(1+\cos^{2}\theta_{p})+R_{em}^{2}\sin^{2}\theta_{p}]d\cos\theta_{p}$$

For $\cos\theta_p$ within [-0.8,0.8]:

$$R = \sqrt{\frac{s}{4M_p^2} \frac{<\cos^2\theta_p > -0.243}{0.108 - 0.648 < \cos^2\theta_p >}}$$
$$\sigma_R = \frac{0.0741}{R(0.167 - <\cos^2\theta_p >)^2} \frac{s}{4M_p^2} \sigma_{<\cos^2\theta_p >}$$

 $|G_{M}|$ extracted from the integral of angular differential cross section and R

e⁺e⁻ →pp

- $R=|G_E|/|G_M|$ consistent with 1
- $|G_M|$ (and $|G_E|$ extracted for the first time Phys. Rev. D91, 112004 (2015)
- Precision between 11% and 28%

2017/5/7

China Three Gorges University

 $e^+e^- \rightarrow \gamma_{ISR}pp$

- \succ 7 data samples (\geq 3.773 GeV)
- > Total luminosity 7.4 fb⁻¹
- ➤ Event selction:
 - Two charged tracks from vertex
 - One high energy shower in EMC
 - Kinematic constraints applied
- ➤ Background evaluation

2017/5/7

Data at the energy 4.23 GeV $p\overline{p}$ invariant mass spectrum from threshold

< ロ > < 同 > < 通 > < 通 >

500

M^{inv} [GeV/c²

- Background subtraction and efficiency dividing
- Combine the seven data samples
 The proton FFs extracted between th. - 3.0 GeV
- Systematic uncertainty included

	$rac{\delta R_{em}}{R_{em}}$	$rac{\delta G_{eff}}{G_{eff}}$
stat.	16% - 34%	5% - 32%
syst.	5% - 22%	2% - 30%

LA: Large polar Angle of ISR photon SA: Small polar Angle of ISR photon

Measurement of Λ Form Factor $e^+e^- \rightarrow \Lambda\bar{\Lambda}$

Reconstruction

 $\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$

 $\overline{\Lambda} \to \bar{n}\pi^0$

combined

 \sqrt{s} GeV

2.2324

2.40

2.80

3.08

Two channels for 2.2324GeV:

• Charged channel: $\Lambda \rightarrow p\pi^+$, $\Lambda \rightarrow p\pi^-$

• Neutral channel: $\Lambda \rightarrow n\pi^0$ Only charged channel for other data:

Full reconstruction for 4 tracks Kinematic constraints applied

Preliminary results for Λ Non-zero behavior at threshold Precision improved by 10% |G| (×10⁻²)

 63.4 ± 5.7

 $12.93 \pm 0.97 \pm 0.92$

 $4.16 \pm 0.73 \pm 0.27$

 $2.21 \pm 0.31 \pm 0.14$

 σ_{Born} (pb)

 $325 \pm 53 \pm 46$

 $(3.0 \pm 1.0 \pm 0.4) \times 10^2$

 320 ± 58

 $133 \pm 20 \pm 19$

 $15.3 \pm 5.4 \pm 2.0$

 $3.9 \pm 1.1 \pm 0.5$

Measurement of Λc Form Factor $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$

Using 4 c.m. energies, 4.575, 4.580, 4.590 and 4.600 GeV, total luminosity 631.3 pb^{-1} $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^+$ is reconstructed by tagging 10 decay modes of Λ_c^+

Angular distribution of Λ_c^+ is studied at 4.575 and 4.600 GeV.

Measurement of kaon Form Factor $e^+e^- \rightarrow K^+K^-$

Cross sections of $e^+e^- \rightarrow K^+K^-$ measured with BESIII data at 2-3 GeV are consistent with those of previous experiments but with higher precision A structure near 2.2 GeV is observed with M=2229.8 $\pm 5.3 \pm 17.2$ MeV $\Gamma = 143.7 \pm 12.0 \pm 7.8$ MeV

Form factor extraction:

$$|F_K|^2(s) = \frac{3s}{\pi \alpha(0)^2 \beta_K^3} \frac{\sigma_{KK}(s)}{C_{FS}}$$

$$\sigma_{KK}(s) = \sigma_{KK}^0(s) \left(\frac{\alpha(s)}{\alpha(0)}\right)^2 C_{FS} = 1 + \frac{\alpha}{\pi} \eta_K(s)$$
Form factor fitting function

$$|F_K|^2 = A \alpha_s^2(s) / s^n$$

$$n = 1.94 \pm 0.09$$
(agreement with pQCD prediction $n = 2$)

2017/5/7

China Three Gorges University

Besile Summary and prospect

- With ISR method
- ✓ $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ is measured with <1% uncertainty ; the deviation of (g-2)_µ is confirmed.
- ✓ Proton form factor is measured.
- Use Energy Scan method
- $\checkmark\,$ proton and Λ , Λ_c form factors are measured.
- A structure near 2.2GeV is observed in e⁺e⁻→K⁺K⁻
- Form Factors of Neutron and other Hyperons will be studied in the near future.

