

The Belle II Experiment: status and physics prospects

Jake Bennett Carnegie Mellon University

B factories

Belle/KEKB (KEK) and BaBar/PEP-II (SLAC)

Very successful physics programs with a total recorded sample over 1.5 ab^{-1} (1.25 x 10⁹ $B\overline{B}$)

Experimental confirmation of CKM
 mechanism as source of CPV in the SM

Results from global fits to data

2001: CP violation in the B system is established following the first measurements of the CKM parameter sin2β by BaBar and Belle

Excellent agreement between SM and results from B-factories and LHCb

Prospects for New Physics at Belle II

- Search for NP in the flavor sector at the intensity frontier
 - Flavor physics as a probe for beyond the TeV scale
- Signatures of new particles or processes observed through measurements of suppressed flavor physics reactions or from deviations from SM predictions
 - An observed discrepancy can be interpreted in terms of NP models
 - Need significantly more data to make this possible
 - Ultimate goal of Belle II: 50 ab⁻¹ data sample

State of the art 2016

 $\Delta m_{d} \& \Delta m_{s}$ 0.6 φ3 0.5 sol. w/ cos 2¢ < 0 (excl. at CL > 0.95) 0.4 3 0.3 0.2 0.1 0.0 -0.2 0.0 0.2 0.6 0.8 -0.4 0.4 1.0 $\overline{\mathbf{0}}$

Belle II 50 ab⁻¹

SuperKEKB The next generation B-factory

5

SuperKEKB nanobeams

Beam aspect ratio at IP

Vertical beta function at IP

Doromotor		KE	KB	Super		
Parameter		LER	HER	LER	HER	units
beam energy	Eb	3.5	8	4	7	GeV
CM boost	βγ	0.4	25	0.5		
half crossing angle	φ	1	1	41	mrad	
horizontal emittance	εχ	18 24		3.2	4.6	nm
beta-function at IP	β_x*/β_y*	1200/5.9		32/0.27	25/0.30	mm
beam currents	lb	1.64 1.19		3.6	2.6	А
beam-beam parameter	ξ _y	0.129	0.090	0.0881	0.0807	nm
beam size at IP	σ_x^*/σ_y^*	100/2		10/0.059		μm
Luminosity	L	2.1 x	10 ³⁴	8 x 10 ³⁵		cm ⁻² s ⁻¹

arXiv:1011.0352 [physics.ins-det] 8

Offline computing

Distributed computing following the LHC model

- Manage the processing of massive data sets
- Production of large MC samples

CZ

3.0%

TW

Many concurrent user analysis jobs

CN

0.2%

FR

High speed networking data challenge in 2016:

 Belle II networking requirements are satisfied

0.0%

Reconstruction performance (from Belle II MC)

Advantages of SuperKEKB and Belle II

- Very clean sample of quantum correlated B⁰B⁰ pairs
- High effective flavor-tagging efficiency
 - Belle II ~34% efficient vs. LHCb ~3%
 - Belle II can also measure K_S and K_L (impacts most time dependent CPV measurements)
- Large sample of τ leptons for measurements of rare decays and searches for LFV
- Efficient reconstruction of neutrals (π^0 , η , ...)
- Dalitz plot analyses, missing mass analyses straightforward
- Systematics quite different than those of LHCb
 → NP seen by one experiment should be
 confirmed by the other

Full reconstruction tagging

 A powerful benefit of physics at B factories: fully reconstruct one B to tag the flavor of the other B, determine its momentum, isolate tracks of signal side

- Excellent tool for missing energy, missing mass analyses!
 - e.g. provide important high-mass sensitivity to the charged Higgs in the multi-TeV range

Belle II physics program

- Belle II physics at PANIC 2017
 - Exotic and conventional bottomonium physics Roberto Mussa
 - Study of charmoniumlike states with ISR XiaoLong Wang
 - CP Violation sensitivity Luo Tao
 - Measurement of the gamma CKM angle Hulya Atmacan
 - Charm physics Longke Li
 - Studies of missing energy decays Yinghui Guan
 - Dark Sector Physics Fabrizio Bianchi
- Review of Belle II to be published in the B2TiP report later this year
 - Includes description of detector, software, analysis tools, etc.
 - <u>https://confluence.desy.de/display/BI/B2TiP+ReportStatus</u>

Early Belle II physics

Quarkonium spectroscopy

- Considerable progress recently in Lattice QCD
- Belle II has the opportunity to search for missing states
- Much to be done to quantify/confirm XYZ states!

Light dark matter searches e.g. dark photon: A' $\rightarrow \gamma$ + invisible

Flavor anomaly in R(D) and R(D*)

Are there new CP violating phases?

- Most theories involving NP include additional CP-violating phases
 - Some allow large deviations from SM predictions for B meson decays

đ

- Search for new sources of CPV by comparing mixing-induced CP asymmetries in penguin transitions with tree-dominated modes
- Time-dependent CPV in b \rightarrow s decays such as B $\rightarrow \phi K^0$, $\eta' K^0$, $K^0 K^0 K^0$

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \bigg\{ 1 + q \cdot \Big[\mathcal{S}\sin(\Delta m_d \Delta t) + \mathcal{A}\cos(\Delta m_d \Delta t) \Big] \bigg\}$$

- Discrepancies with respect to J/ψ K⁰ could provide evidence for NP

Are there new CP violating phases?

- Most theories involving NP include additional CP-violating phases
 - Some allow large deviations from SM predictions for B meson decays
- Search for new sources of CPV by comparing mixing-induced CP

Lepton Flavor Violation

- Highly suppressed in the SM
 - BF on the order of 10^{-40} ($\tau \rightarrow \ell \gamma$) to 10^{-54} ($\tau \rightarrow \ell \ell \ell$)
- Clean probes for NP effects
- τ decays uniquely studied at B-factories

- $\tau \underbrace{\tau}_{\nu_{\tau} \times \nu_{\mu}} \underbrace{\tau}_{\nu_{\mu}} \underbrace{\tau}_{\mu}$
- Hadron machines not competitive trigger and track p_T limiting

Belle II can access LFV decay rates more than an order of magnitude smaller than Belle!

"First measurements of beam backgrounds at SuperKEKB", to be submitted to NIM-A in late 2017

QCSL cooled and excited in Dec. 2016 for the first time

QCSR delivered on Feb. 13, 2017

Belle II "roll-in" April 11, 2017

Belle II roll in: 1400 tons, 8m x 8m, moved 13m horizontally

- Belle II global cosmic run (July August 2017)
 - Final 1.5T solenoid field
 - Readout integration of installed sub-detectors and central DAQ in progress

Hits in four outer subdetectors

- Vertex detector (VXD)
 - Pixel Detector (PXD): 2 layers of DEPFET pixels
 - Silicon Vertex Detector (SVD): 4 layers of double-sided silicon detectors
- Increased VXD radius: significant improvement expected with respect to Belle in vertex resolution

26

Complete Belle II detector Goal: 50 ab⁻¹

Summary

- Major upgrade at KEK for the next generation B-factory
 - Many detector components and electronics replaced, software and analysis tools also improved!
- Belle II has a rich physics program, complementary to existing experiments and energy frontier program
- Successful phase 1 operation in 2016
- Cosmic data taking with central DAQ in 2017
- First physics without vertex detectors in early 2018
- Full detector operation in late 2018/early 2019

Extra slides

The Belle II Collaboration

Imaging Time-Of-Propagation (TOP) Counter

- Barrel ring-imaging Cherenkov (RICH) device
 - Total internal reflection of Cherenkov
 photons emitted in the quartz radiator
 - Fast, position-sensitive detector of single photons

Channel Vs. time for 3GeV pions/kaons with beam test setup

Aerogel RICH detector

- End-cap RICH device
 - Aerogel tiles are used as a radiator
 - Photons propagate through an expansion volume before detection with HAPD photodetectors

Beam backgrounds

- In Belle/KEKB, unexpected backgrounds burned a hole in the beam pipe and damaged the inner detectors
- Especially dangerous at SuperKEKB (10-20x higher background rate)
 - · Temporary damage or faults in electronics
 - Obscure physics processes
 - Fake interesting physics signals
 - · Rejecting fake signals also lowers efficiency
- Purpose of BEAST: Beam Exorcism for A Stable Belle II Experiment

Belle II physics goals

- Rich physics program
 - Precision CKM, new sources of CPV, Lepton Flavor Violation, Dark Sectors, QCD exotics
- Competitive and complementary to LHCb physics program
 - Belle II strong in missing energy modes, time dependent CPV, very strong in CKM metrology

Expected uncertainties on several selected flavor observables with an integrated luminosity of 5 ab⁻¹ and 50 ab⁻¹ of Belle II data

	Observables	Belle	Belle	e II
		(2014)	5 ab ⁻¹	50 ab-1
UT angles	$\sin 2\beta$	0.667 ± 0.023 ± 0.012 [56]	0.012	0.008
	α [°]	85 ± 4 (Belle+BaBar) [24]	2	1
	γ [°]	68 ± 14 [13]	6	1.5
Gluonic penguins	$S(B \rightarrow \phi K^0)$	$0.90^{+0.09}_{-0.19}$ [19]	0.053	0.018
	$S(B \rightarrow \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$ [57]	0.028	0.011
	$S(B \rightarrow K_S^0 K_S^0 K_S^0)$	$0.30 \pm 0.32 \pm 0.08$ [17]	0.100	0.033
	$\mathcal{A}(B \to \tilde{K^0} \pi^{\bar{0}})$	$-0.05 \pm 0.14 \pm 0.05$ [58]	0.07	0.04
UT sides	$ V_{cb} $ incl.	$41.6 \cdot 10^{-3}(1 \pm 1.8\%)$ [8]	1.2%	
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex} \pm 2.7\%_{fb})$ [10]	1.8%	1.4%
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3}(1 \pm 6.0\%_{ex} \pm 2.5\%_{th})$ [5]	3.4%	3.0%
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3}(1 \pm 9.5\%)$ [7]	4.4%	2.3%
Missing E decays	$\mathcal{B}(B \to \tau \nu)$ [10 ⁻⁶]	$96(1 \pm 27\%)$ [26]	10%	5%
87	$\mathcal{B}(B \to \mu \nu)$ [10 ⁻⁶]	< 1.7 [59]	20%	7%
	$R(B \rightarrow D\tau \nu)$	$0.440(1 \pm 16.5\%)$ [29] [†]	5.2%	3.4%
	$R(B \rightarrow D^* \tau \nu)^{\dagger}$	$0.332(1 \pm 9.0\%)$ [29] [†]	2.9%	2.1%
	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) [10^{-6}]$	< 40 [31]	< 15	20%
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) [10^{-6}]$	< 55 [31]	< 21	30%
Rad. & EW penguins	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4}(1 \pm 4.3\% \pm 11.6\%)$	7%	6%
	$A_{CP}(B \rightarrow X_{s,d}\gamma) [10^{-2}]$	$2.2 \pm 4.0 \pm 0.8$ [60]	1	0.5
	$S(B \rightarrow K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07[20]$	0.11	0.035
	$S(B \rightarrow \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$ [21]	0.23	0.07
	$C_7/C_9 (B \to X_s \ell \ell)$	~20% [37]	10%	5%
	$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	< 8.7 [40]	0.3	-
	$\mathcal{B}(B_s \to \tau \tau) [10^{-3}]$	-	< 2 [42]‡	-
Charm Rare	$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \cdot 10^{-3}(1 \pm 5.3\% \pm 3.8\%)$ [44]	2.9%	0.9%
	$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \cdot 10^{-3}(1 \pm 3.7\% \pm 5.4\%)$ [44]	3.5%	3.6%
	$\mathcal{B}(D^0 \to \gamma \gamma) [10^{-6}]$	< 1.5 [47]	30%	25%
Charm CP	$A_{CP}(D^0 \to K^+K^-)$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$ [61]	0.11	0.06
	$A_{CP}(D^0 \to \pi^0 \pi^0) [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$ [62]	0.29	0.09
	$A_{CP}(D^0 \to K_S^0 \pi^0) [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$ [62]	0.08	0.03
Charm Mixing	$x(D^0 \to K_s^0 \pi^+ \pi^-)$ [10 ⁻²]	$0.56 \pm 0.19 \pm \frac{0.07}{0.13}$ [50]	0.14	0.11
	$y(D^0 \to K_S^0 \pi^+ \pi^-) [10^{-2}]$	$0.30 \pm 0.15 \pm \frac{0.05}{0.08}$ [50]	0.08	0.05
	$ q/p (D^0 \rightarrow K_s^0 \pi^+ \pi^-)$	$0.90 \pm 0.16 \pm 0.08 = 0.06$ [50]	0.10	0.07
	$\phi(D^0 \rightarrow K^0_S \pi^+ \pi^-)$ [°]	$-6 \pm 11 \pm \frac{4}{5}$ [50]	6	4
Tau	$\tau \rightarrow \mu \gamma [10^{-9}]$	< 45 [63]	< 14.7	< 4.7
	$\tau \rightarrow e \gamma [10^{-9}]$	< 120 [63]	< 39	< 12
	<i>т → µµµ</i> [10 ⁻⁹]	< 21.0 [64]	< 3.0	< 0.3

P. Urquijo / Nuclear and Particle Physics Proceedings 263–264 (2015) 15–23

Bottomonium spectroscopy

- Considerable progress recently in Lattice QCD
- Belle II has the opportunity to search for missing states
- Clean environment
 - Search for new states inclusively ۲
 - Reconstruct a single resonance and search the recoiling system

PHYSICAL REVIEW D 92, 054034 (2015)

2015	XYZ Spectroscopy (a subset) X(5568) Pc(4380) Pc(4450)
2013	Z _b (10610) Z _b (10650)
2011	Y(4140) Y(4274)
2009	X(4350) X(4630) • Many interesting states (recently) discovered
2007	$G(3900) \bigcirc \bigcirc$
2005	$Y(4260) NN N V \xrightarrow$
2003	X(3872)

Other probes for NP

- Radiative and electroweak processes
 - $b \rightarrow s\gamma (B \rightarrow K^*\gamma), b \rightarrow d\gamma (B \rightarrow \rho\gamma, \omega\gamma), b \rightarrow sll (B \rightarrow K(^*)ll)$

Starts at one-loop order Suppressed by two orders of magnitude

- NP contribution could be different for each process
 - Always one-loop or higher in $b \rightarrow s(d)\gamma$, but may be tree level in $b \rightarrow s(d)II$
- For example helicity-changing NP models and $B^0 \to K_S \; \pi^0 \; \gamma$

Leptonic B decays

- Experimentally challenging
 - >1 neutrino in the final state
 - Signal side only has 1 charged track (τ → μνν, evv, πν)
- Use fully reconstructed hadronic and semileptonic tags
- Useful for |V_{ub}| measurement (becomes competitive with semileptonic decays with 50 ab⁻¹)

Leptonic B decays

Constraints on tan β and m_H greatly improve with 50 ab⁻¹

Aim to measure $B(B \rightarrow \tau v)$ with precision of 3-5%

Semileptonic B decays

• Proceed via first-order electroweak interactions (mediated by W)

- Decays involving electrons and muons less sensitive to non-SM contributions
 - Measure CKM elements
 |V_{cb}| and |V_{ub}|
- Decays involving τ also sensitive to additional amplitudes
 - Search for NP
 - Experimentally challenging

2HDM:
$$B = B_{SM} \times m_{W^{\pm}} \left(\frac{\tan\beta}{m_{H^{\pm}}}\right)$$

arxiv1603.06711:Belle-CONF-1602

CPV in $D^0-\overline{D}^0$ mixing

- SM mixing rate is sufficiently small that NP contributions may be detectable
- Mass eigenstates are superpositions of flavor eigenstates

$$D_{\frac{1}{2}} = pD^0 \pm q\bar{D}^0$$

In the absence of CPV, D₁ is CP-even, D₂ is CP-odd

 $x\equiv (m_1-m_2)/\Gamma ~~y\equiv (\Gamma_1-\Gamma_2)/(2\Gamma) ~~\Gamma\equiv (\Gamma_1+\Gamma_2)/2 ~~\phi=\mathrm{Arg}(q/p)$

CPV in $D^0-\overline{D}^0$ mixing

- Current measurements of x,y give many constraints on NP models
- LHCb will dominate most of these measurements, but Belle II should be competitive in a few
 - If LHCb sees NP, important for Belle II to independently confirm!

Expected uncertainties	(M.	Staric,	KEK	FFW14)
------------------------	-----	---------	-----	-------	---

Analysis	Observable	Uncertainty (%)					
		Now $(\sim 1 \text{ ab}^{-1})$	$\mathcal{L} = 50 \ \mathrm{ab^{-1}}$				
$K^0_S \pi^+\pi^-$	\boldsymbol{x}	0.21	0.08				
	y	0.17	0.05				
	q/p	18	6				
	ϕ	0.21 rad	0.07 rad				
$\pi^+\pi^-, K^+K^-$	y_{CP}	0.25	0.04				
	A_{Γ}	0.22	0.03				
$K^+\pi^-$	x'^2	0.025	0.003				
	y'	0.45	0.04				
	q/p	0.6	0.06				
	ϕ	0.44	0.04 rad				

Direct CPV in Charm

$$A^f_{CP} = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to \overline{f})}$$

- Major Belle II contribution will be in channels with neutrals in the final state
- Most measurements will be systematics limited

mode	\mathcal{L} (fb ⁻¹)	A _{CP} (%)	Belle II at 50 ab ⁻¹
$D^0 ightarrow K^+K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	±0.03
$D^0 ightarrow \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05
$D^0 ightarrow \pi^0 \pi^0$	976	$\sim\pm0.60$	± 0.08
$D^0 ightarrow K^0_s \pi^0$	791	$-0.28 \pm 0.19 \pm 0.10$	±0.03
$D^0 ightarrow K_s^0 \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 ightarrow K_s^0 \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43\pm1.30$	± 0.13
$D^0 ightarrow K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	±0.40
$D^0 ightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	±0.33
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	±0.04
$D^+ \rightarrow \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ ightarrow \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
$D^+ ightarrow K_s^0 \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	±0.03
$D^+ \rightarrow K_s^0 K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	±0.05
$D_s^+ \rightarrow K_s^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29
$D_s^+ \rightarrow K_s^0 K^+$	673	$+0.12\pm 0.36\pm 0.22$	±0.05

(table by Marko Staric)

Results from global fits to data

There is still room for new physics contributions (FCNC, LFV, $B \rightarrow \tau$ tree-level NP, new sources of CPV)

- A 10-20% NP amplitude in B_d mixing is perfectly compatible with all current data
 - Scale ~20 TeV for tree-level, ~2 TeV at one loop

Parameterize NP contributions to the $B_{d,s}$ mixing amplitudes as $M^{d,s}_{12} = (M^{d,s}_{12})_{CM} \times (1 + h_{d,s} e^{2i\sigma d,s})$

First Physics

Energy	Outcome	Lumi (fb ⁻¹)	Comments
Υ(1S) On	N/A	60+	-No interest identified -Low energy
Ƴ(2S) On	New physics searches	20+	-Requires special trigger
Ύ(1D) Scan	Particle discovery	10-20	-Accessible in B Factories?
Υ <mark>(</mark> 3S) On	Many -onia topics	200+	-Known resonance -Luminosity requirement: Phase 3
Ύ(3S) Scan	Precision QED	~10	-Understanding of beam conditions needed
Ύ(2D) Scan	Particle discovery	10-20	-Unknown mass
>Ƴ(4S) On	Particle discovery?	10+?	-Energy to be determined
Ƴ(6S) On	Particle discovery?	30+?	-Upper limit of machine energy
Single y	New physics?	30+	-Special triggers required

											_	
Experiment	Scans/Off.	Res.	$ ightarrow \Upsilon(5S)$ $ ightarrow$		$\Upsilon(4S)$		$\Upsilon(3S)$		$\Upsilon(2S)$		$\Upsilon(1S)$	
			10876	MeV	10580	MeV	10353	$5 { m MeV}$	10023	MeV	9460	MeV
	$\rm fb^{-1}$		${\rm fb}^{-1}$	10^{6}	$\rm fb^{-1}$	10^{6}	fb=1	10^{6}	$\rm fb^{-1}$	10^{6}	fb^{-1}	10^{6}
CLEO	17.1		0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54		R_b s	scan	433	471	30	122	14	99	-	_
Belle	100		121	36	711	772	3	12	25	158	6	102

This spring: Belle II "roll-in" April 11, 2017

1400 tons, 8m x 8m, moved 13m horizontally