

Jing Chen

University of Science & Technology of China on behalf of the ATLAS Collaboration

Sept. 1st, 2017

Atlas B-physics programme

Precise measurements

--Rare decays of B-hadrons --CPV

--Properties of entire family of B-mesons (B^+, B_d, B_s, B_c) and B-baryons (Υ, Λ_b)

Spectroscopy

--New states and decay modes

Quarkonia production

--Inclusive quarkonia production($Onia \rightarrow \mu^+ \mu^-$) --Associated production(Onia+W/Z)

Quarkoina production

High luminosity and energy of the LHC allows a more detailed study.

Heavy flavour production

1. A unique and important testing ground for QCD.

2. Play an important role in the determination of PDFs and form an important background for many searches

Recent results

--prompt J/ψ pair production arXiv:1612.02950v2 --b-hadron pair production arXiv:1705.03374v1

The ATLAS detector

Inner detector (ID)

-|ŋ|<2.5

-Si pixels, Si strips, TRT

-Precise tracking and vertexing(in 2014, add Insertable B-layer)

-e/ π separation

-Momentum resolution:

 $\sigma/p_T \sim 3.8 \times 10^{-4} p_T \oplus 1.5\%$

Calorimeters (CALO) -Pb/LAr accordion structure for EM - e/γ trigger identification and measurement : $\sigma/E \sim 10\%/$ $\sqrt{E} \oplus 0.7\%$ -HAD: trigger and measurement of jets and E_T^{miss} , $\sigma/E \sim 50\%/$ $\sqrt{E} \oplus 0.3\%$ -Forward calorimeters(FCAL): covers up to $|\eta| < 4.9$

Muon Spectrometer (MS)
-Triggering |η| < 2.4
-Precision Tracking |η| < 2.7
-Magnetic filed produced by toroids
-Muon momentum resolution < 10%
up to 1 TeV

b-hadron pair production

$b - hadron \rightarrow J/\psi(\rightarrow \mu\mu) + X$

$b - hadron \rightarrow \mu + X$

- An important input to improving theoretical predictions
- Important background of Higgs($\rightarrow b\overline{b}$)+V

 $11.4 f b^{-1}$ of 8 TeV ATLAS data

Non-prompt J/ ψ^{μ^-}

\square Non-prompt J/ψ extraction

Prompt

Produced from short-lived QCD decays (including feed-down from other charmonium states)

Non-prompt

Produced in the decays of long lived bhadrons - displaced decay vertex

Pseudo-proper decay time

$$\tau(\mu\mu) = L_{xy}m(\mu\mu)/p_T(\mu\mu)$$

6

Simultaneous fit $m(\mu^+, \mu^-)$ and τ to extract non-prompt J/ψ $\tau > 0.25$

 τ >0.25 mm/c, removing all of the prompt J/ψ candidates.

- **3**rd muon extraction
- Third-muon background : prompt muon, fake muon(decay-in-flight muon & hadronic shower leakage muons), fake J/ψ , pile-up
- Simultaneous fit
- -- Transverse impact parameter significance $S(d_0) \equiv d_0/\sigma(d_0)$ --BDT output

Events / 3 Events / 0.022 ATLAS ATLAS Data Data Total p.d.f Total p.d.f √s= 8 TeV, 11.4 fb⁻¹ √s= 8 TeV, 11.4 fb⁻¹ 10 10³ Signal µ Signal µ Prompt µ Prompt µ Non-prompt fake μ Non-prompt fake µ 1 O³ $0.4 < \Delta R(J/\psi,\mu) < 0.8$ $0.4 < \Delta R(J/\psi,\mu) < 0.8$ Prompt fake µ Prompt fake µ Fake J/ψ ■ 🗤 Fake J/ψ 10^{2} Pile-up Pile-up 10² 10 10 1 -150 -100-50 0 50 100 150 -1 -0.5 0 0.5 d_o significance **BDT** output

□ Irreducible backgrounds

- $B_c \rightarrow J/\psi + \mu + X$, semileptonic decays of c-hadrons, sail-through
- Estimate from MC

$\hfill\square$ Extrapolation to the full range of τ and resolution corrections

Results—Pythia8

- Pythia8 with several different options for the $g \rightarrow b\overline{b}$ splitting kernel.
- Pythia8 does not reproduce the shape of the angular distributions.
- The p_T -based scale splitting kernels (Opt. 1 and 4) generally give a better description of the low $\Delta R(J/\psi, \mu)$ region, with the kernel of Opt. 4 performing the best. This region is more suppressed in the mass-based scale kernels.

Results—Herwig, MadGraph, Sherpa

- $\Delta R(J/\psi,\mu)$ for $p_T > 20 GeV$ and $p_T < 20 GeV$, $\Delta \phi(J/\psi,\mu)$, $\Delta y(J/\psi,\mu)$, $y_{boost}(J/\psi,\mu)$, $p_T(J/\psi,\mu)$, $m^{\mu\mu\mu}/p_T^{\mu\mu\mu}$, $p_T^{\mu\mu\mu}/m^{\mu\mu\mu}$ are also compared.
- The 4-flavour prediction from Mad-Graph5_aMC@NLO+Pythia8 provides the best description of the data overall(in low $m(J/\psi, \mu)$ region, 5 flavour provides a better description)

PANIC

Prompt J/ψ **pair production**

$J/\psi \rightarrow \mu\mu$

- Sensitive to NLO and higher-order pQCD corrections
- Study and compare J/ψ production models
- DPS presents a unique insight into the structure of the proton(σ_{eff}) and allows a better comprehension of backgrounds to searches for new phenomena

11.4 fb^{-1} of 8 TeV ATLAS data

- J/ψ reconstructed in $\mu\mu$ channel
- Correction for acceptance and efficiencies(trigger, reconstruction, and selection criteria) applied to data ATLAS
- Backgrounds Steps:

--Pile-up

--Non- J/ψ events \Rightarrow 2D $m(J/\psi_1)$ and $m(J/\psi_2)$ fit --Non-prompt $J/\psi \Rightarrow 2D L_{xy}(J/\psi_1)$ and $L_{xy}(J/\psi_2)$ fit \Rightarrow subtracted using d_z distribution

The fits use the parameters derived from the inclusive I/ψ sample.

 $|d_{\tau}| < 1.2mm$

Jing Chen (USTC)

DPS extraction

Data-driven model-independent approach:

--DPS is simulated by combining re-sampled J/ψ mesons from two different random events in the di- J/ψ sample, normalized to DPS dominated region: $\Delta \phi \leq \pi/2, \Delta y \geq 1.8$

--SPS template is obtained by subtracting the DPS template

Cross-section measurement

- $p_T(J/\psi) > 8.5 GeV, |y(J/\psi)| < 2.1$
- under the assumption of unpolarised J/ψ mesons

- Peak in low $p_T: J/\psi'$ s are in away topology
- Peak in high p_T : $J/\psi's$ are in towards topology and back-to-back with respect to an additional gluon

DPS measurement

- Calculated in muon fiducial volume(data set size limited, there are large fluctuations in the acceptance-corrected distributions)
- The data-driven DPS distribution approximately agrees with the DPS predictions
- There is disagreement at large Δy , large $m(J/\psi, J/\psi)$ and low p_T region(di- J/ψ production in an away topology)

$$f_{\text{DPS}} = (9.2 \pm 2.1 \text{ (stat)} \pm 0.5 \text{ (syst)})\%$$

Effective cross-section

$$\sigma_{\rm eff} = \frac{1}{2} \frac{\sigma_{J/\psi}^2}{\sigma_{\rm DPS}^{J/\psi,J/\psi}} = \frac{1}{2} \frac{\sigma_{J/\psi}^2}{f_{\rm DPS} \times \sigma_{J/\psi J/\psi}}$$

- J/ψ meson production is dominated by gluon–gluon interactions, the DPS crosssection is sensitive to the spatial distribution of gluons in the proton
- σ_{eff} 4~21mb from these experiments and measurements.
- σ_{eff} measured in di- J/ψ final states generally lower than measured in other final states

 $\sigma_{eff} = 6.3 \pm 1.6(stat) \pm 1.0(syst) \pm 0.1(BF) \pm 0.1(lumi)mb$

Effective cross-section

- In defining σ_{eff} , assumptions are made which lead to process and energy independence although there is no theoretical need for this independence.
- More measurements of σ_{eff} at different energies will be helpful to test this assumption.

Summary

Production of b-hadron pairs

- Total fiducial cross section($p_T^{\mu} > 6 GeV$, $\left| \eta_{\mu}^{J/\psi} \right| < 2.3$, $\left| \eta_{\mu}^{3^{rd}} \right| < 2.5$): $\sigma(B(\rightarrow J/\psi(\rightarrow \mu\mu) + X)B(\rightarrow \mu + X)) = 17.7 \pm 0.1(stat) \pm 2.0(syst)nb$
- For Pythia8, the p_T -based splitting kernel gives the best agreement with data, performing comparably to Herwig++.
- For all generators, the best overall agreement with data comes from the 4-flavour MadGraph5 aMC@NLO+Pythia8 prediction.
- \square Production of prompt J/ψ pair
- The total cross-section over the full fiducial J/ψ rapidity:

 $\sigma(pp \rightarrow J/\psi J/\psi + X) = 160 \pm 12 \text{ (stat)} \pm 14 \text{ (syst)} \pm 2 \text{ (BF)} \pm 3 \text{ (lumi) pb}$

The DPS cross-section, corrected for the muon acceptance in the full J/ψ rapidity:

 $\sigma_{\text{DPS}}^{J/\psi, J/\psi} = 14.8 \pm 3.5 \text{ (stat)} \pm 1.5 \text{ (syst)} \pm 0.2 \text{ (BF)} \pm 0.3 \text{ (lumi) pb}$

 f_{DPS} taken from the Δy distribution:

 $f_{\text{DPS}} = (9.2 \pm 2.1 \text{ (stat)} \pm 0.5 \text{ (syst)})\%$

The effective cross-section:

 $\sigma_{\text{eff}} = 6.3 \pm 1.6 \text{ (stat)} \pm 1.0 \text{ (syst)} \pm 0.1 \text{ (BF)} \pm 0.1 \text{ (lumi)} \text{ mb}$

NLO^{*} describes the data well, possible explanations at large Δy and invariant mass might be needed. PANIC

Jing Chen (USTC)

backup

Recent results

High luminosity and energy of the LHC allows a more detailed study

 $J/\psi + W^{\pm}$ production J/ψ + Z production $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ production J/ψ and $\psi(2S)$ production prompt J/ψ pair production χ_{c1}, χ_{c2} production b-hadron pair production $\chi_b \to \Upsilon(1S), \chi_b \to \Upsilon(2S)$ production **Upsilon production**

New results on the way

b-hadron pair production

$b - hadron \rightarrow J/\psi(\rightarrow \mu\mu) + X$

$b - hadron \rightarrow \mu + X$

- An important input to improving theoretical predictions
- Important background of Higgs($\rightarrow b\overline{b}$)+V

11.4 fb^{-1} of 8 TeV ATLAS data

Non-prompt J/ψ extraction

- Background: prompt J/ψ , fake $J/\psi(J/\psi$ candidate comes from the dimuon continuum background)
- To increase the signal muon purity and improve the third-muon fit performance, the selected J/ψ in each event is first required to have τ >0.25 mm/c, removing all of the prompt J/ψ candidates.

Jing Chen (USTC)

3rd muon extraction

• Third-muon background : prompt muon, fake muon(decay-in-flight muon & hadronic shower leakage muons), fake J/ψ , pile-up

--DIF : Muons are the result of the decay of a charged pion or kaon.

--Hadronic shower leakage muons : Charged hadrons leave tracks in the inner detector and charged particles from the shower in the hadronic calorimeter leave tracks in the muon spectrometer.

--Fake J/ψ : third muons in events where the J/ψ candidate is not a real J/ψ but from the continuum background.

USTC)

--Pile-up: events where the J/ψ and third muon are produced from different hard scatters in the same bunch crossing

- Simultaneous fit
- -- Transverse impact parameter significance $S(d_0) \equiv d_0/\sigma(d_0)$
- --BDT output

 d_0 is the distance of closest approach of the track to the primary vertex point in the r- ϕ projection.

 Δz_0 defined as the difference between the reconstructed zposition (at their respective points of closest approach to the beam axis) of the third-muon track and the J/ψ candidate muon which maximises the value of Δz_0 .

□ Irreducible backgrounds

• $B_c \rightarrow J/\psi + \mu + X$, semileptonic decays of c-hadrons, sail-through -- $B_c \rightarrow J/\psi + \mu + X$: Both the J/ψ and third muon originate in the decay of the same hadron(small contribution, taken from simulation).

-- Semileptonic decays of c-hadrons : production modes include separate $g \rightarrow b\bar{b}$ and $g \rightarrow c\bar{c}$ in the same hard scatter, or DPS producing $b\bar{b} + c\bar{c} + X$ in a single pp collision(c-hadrons have shorter lifetimes than b-hadrons, producing a narrower $S(d_0)$ distribution. Small contribution, taken from simulation).

--Sail-through : A charged pion or kaon traverses the detector to MS without interacting with the detector material or decaying(very similar to the signal third muons, taken from simulation).

• Estimate from MC

\Box Extrapolation to the full range of τ and Resolution corrections

• Once the signal yield has been determined, a correction must be applied to extrapolate the results obtained in the third muon fit (for $\tau > 0.25$ mm/c) to the full range of J/ψ pseudo-proper decay time.

Pythia8 in different settings

Option	Descriptions
label	
Opt. 1	The same splitting kernel, $(1/2)(z^2 + (1-z)^2)$, for massive as massless quarks, only with an
	extra β phase-space factor. This was the default setting in PYTHIA8.1, and currently must
	also be used with the $MC@NLO$ [34] method.
Opt. 4	A splitting kernel $z^2 + (1-z)^2 + 8r_q z(1-z)$, normalised so that the z-integrated rate is
	$(\beta/3)(1+r/2)$, and with an additional suppression factor $(1-m_{qq}^2/m_{dipole}^2)^3$, which reduces
	the rate of high-mass $q\bar{q}$ pairs. This is the default setting in PYTHIA8.2.
Opt. 5	Same as Option 1, but reweighted to an $\alpha_{\rm s}(km_{aa}^2)$ rather than the normal $\alpha_{\rm s}(p_{\rm T}^2)$, with
	k = 1.
Opt. 5b	Same as Option 5, but setting $k = 0.25$.
Opt. 8	Same as Option 4, but reweighted to an $\alpha_{\rm s}(km_{aa}^2)$ rather than the normal $\alpha_{\rm s}(p_{\rm T}^2)$, with
-	k = 1.
Opt. 8b	Same as Option 8, but setting $k = 0.25$.

Description of Pythia8 options. Options 2, 3, 6 and 7 are less well physically motivated and not considered here.

Prompt J/ψ **pair production**

$J/\psi \rightarrow \mu\mu$

- Sensitive to NLO and higher-order pQCD corrections
- Study and compare J/ψ production models
- DPS presents a unique insight into the structure of the proton(σ_{eff}) and allows a better comprehension of backgrounds to searches for new phenomena

11.4 fb^{-1} of 8 TeV ATLAS data

Main backgrounds

--Non- J/ψ events(semileptonic decays of b-hadrons, dimuon continuum events from Drell–Yan processes) $\Rightarrow 2D m(J/\psi_1)$ and $m(J/\psi_2)$ fit To parameterise the mass distribution of J/ψ signal events, a large inclusive J/ψ sample selected from 8 TeV ATLAS data is used. It has the same selections with the di- J/ψ sample.

--Non-prompt J/ψ \Rightarrow 2D $L_{xy}(J/\psi_1)$ and $L_{xy}(J/\psi_2)$ fit

--Pile-up(the two J/ψ mesons originate from two independent pp collisions, have distributions similar to those from DPS) \Rightarrow subtracted using d_z distribution

 J/ψ_1 : leading J/ψ J/ψ_2 : sub-leading J/ψ

Definition

NLO*: Leading-order DPS plus next-to-leading-order-colour singlet model SPS predictions without loops