

The 21st Particles & Nuclei International Conference

1-5 September 2017, IHEP, Beijing, China

A few certainties and many uncertainties about multiquarks

J. Vijande (Univ. Valencia)

A. Valcarce, J.-M. Richard

Experiment: The first charmed "exotic" states (1974)

PANIC 2017 / J. Vijande

New experimental challenges (2003)

Are all these resonances (if they really exist!) multiquark states and/or hadron-hadron molecules?

Back to 1974: A challenge for theory!!

$$|\operatorname{Meson}(B=0)\rangle \Rightarrow |q\bar{q}\rangle, |qq\bar{q}\bar{q}\rangle \longrightarrow |cc\bar{n}\bar{n}\rangle$$
$$|\operatorname{Baryon}(B=1)\rangle \Rightarrow |qqq\rangle, |qqqq\bar{q}\rangle \longrightarrow |nnn\bar{c}\rangle$$

Predictions: An experimental challenge!!

Many speculations about the stability of $(Q_1Q_2Q_3Q_4)$: (cc<u>cc</u>), (bb<u>cc</u>), (bc<u>cc</u>), ...

- Extrapolation of quarkonium dynamics to higher configurations
- New color substructures: 3- or 4-body forces / Role of antisymmetry

Chromoelectric (CE) limit (Two-body forces and color as a global operator)

Limit of very heavy constituents: Neglect chromomagnetic terms $\propto (m_i m_j)^{-1}$

$$H = \sum_{i} \frac{\vec{p}_i^2}{2 m_i} - \frac{16}{3} \sum_{i < j} \vec{\lambda}_i \cdot \vec{\lambda}_j V(r_{ij}) \qquad \Leftrightarrow \qquad \mathbf{QED} \qquad H = \sum_{i} \frac{\vec{p}_i^2}{2 m_i} - \sum_{i < j} \frac{e_i e_j}{r_{ij}}$$

QED

✓ $(e^+ e^+ e^- e^-) = Ps_2$ positronium molecule, stable although with tiny binding

✓ (p p e^-e^-) = H₂ hydrogen molecule, stable with a comfortable binding

- \checkmark (M⁺ M⁺ m⁻ m⁻) more stable than (m⁺ m⁺ m⁻ m⁻). Stability depends critically on the masses involved
- ✓ But (M⁺ m⁺ M⁻ m⁻) unstable if M/m ≥ 2.2

QCD

- \circ (QQqq) stable for large M/m ratio
- (QQQQ) unstable in naive CE limit
- Delicate four-body problem
- Approximations, like diquarks or restricting the Hilbert space, **artificially** favor binding

Improved chromoelectric model: Many-body confining forces

 $V_s = \min(V_f, V_b).$

 V_f stands for the so-called "flip-flop" model

$$V_f = \lambda \min(r_{13} + r_{24}, r_{23} + r_{14}),$$

 V_b is the butterflylike configuration,

$$V_b = \lambda \min_{k,\ell} (r_{1k} + r_{2k} + r_{k\ell} + r_{\ell 3} + r_{\ell 4}).$$

J.V., A.V., J.-M.R., Phys. Rev. D 76, 114013 (2007), Phys. Rev. D 87, 034040 (2013)

PANIC 2017 / J. Vijande

Improved chromoelectric model: Many-body confining forces

$$V = -\frac{3}{16} \sum_{i < j} \tilde{\lambda}_i . \tilde{\lambda}_j v(r_{ij}).$$
$$\Psi = \psi_T |T\rangle + \psi_M |M\rangle,$$

 $A \Rightarrow$ String model with $|T\rangle$ $B \Rightarrow$ String model with $|T\rangle$ and $|M\rangle$ $C \Rightarrow$ Pairwise with $|T\rangle$ and $|M\rangle$ $D \Rightarrow$ Adiabatic limit of C

A,D (adiabatic) bound !! BUT B,C (color+antisymmetry) unbound

All-heavy tetraquarks

- □ (bb<u>bb</u>) and (cc<u>cc</u>) are **unstable** in serious 4-body estimates in naive **CE models**. They follow the trends of (++--) in QED, but less favorable due to the non-Abelian algebra of charges.
- \Box (bc<u>bc</u>) might have some opportunities as compared to (bb<u>bb</u>) and (cc<u>cc</u>)

 $(\underline{b}\underline{c})(\underline{c}\underline{b}) \equiv M\underline{M}$

BUT (bc<u>bc</u>)

there are two-different thresholds

 $(\underline{b}\underline{b})(\underline{c}\underline{c}) \equiv \Upsilon J/\psi$

THUS it may present **metastability** below the MM threshold

(**bb**<u>cc</u>) although more delicate:

- ✓ Benefits from symmetry breaking
- \checkmark There is a single threshold
- ✓ For non-identical quarks and antiquarks, string potentials offer good opportunities
- ✓ (QQqq) favored in the CE limit due to the striking M/m dependence

Chromomagnetic term: Dibaryons (qqqq'QQ')

	Color +	Antisymm	etry	J.V., A.V	., JM.R., I	P.S., Phys. Re	v. D 94, 034	4038 (2016)
$V = -\frac{3}{16} \sum_{i < j} \tilde{\lambda}_i . \tilde{\lambda}_j \left(-\frac{a}{r_{ij}} + b r_{ij} \right)$				$S_1 = ($	$\begin{array}{c} 000) \ , S\\ S_4 = (11) \end{array}$	$S_2 = (011)$ (0), $S_5 =$, $S_3 = ($ = (111) .	101),
$+ \frac{c}{m_i m_j} \left(\right)$	$\left(\frac{\mu}{\pi}\right)^{3/2} \exp(-\mu)$	$(r_{ij}^2) \boldsymbol{\sigma}_i . \boldsymbol{\sigma}_j ight)$		$C_1 = ($	$\begin{array}{c} 666 \end{pmatrix}, C_{4} = (ar{3}ar{3}) \end{array}$	$C_2 = (6\bar{3}\bar{3})$ $(66), C_5 =$, $C_3 = ($ = $(\bar{3}\bar{3}\bar{3})$.	$(\bar{3}6\bar{3})$,
$\begin{array}{ c c c }\hline \hline Color-spin \ vector & \mathbf{J} \\\hline \hline C_1 S_1 \\\hline C_1 S_1 \\\hline \end{array}$	P=0+	E (GeV) 3.079	TABLI contrib	E III: Pro uting to t	babilities of the $J^P = 0$	of the different six-quark s	ent six-body state.	v channels
C_2S_1 C_3S_4 C_2S_2 C_2S_2		2.829 2.831 3.030 2.030	Chan Probal	nel oility	$\begin{array}{c} C_1 S_2 \\ 0.004 \end{array}$	C_2S_1 0.539	C_3S_4 0.456	C_4S_3 0.001
$C_3S_3 \\ C_3S_5 \\ C_1S_2 \\ C_4S_3$		2.908 2.995 2.835		Conf	flict betw t goes ag	ween CE gainst bin	and CM <mark>ding</mark>	
$egin{array}{ccc} C_4S_4 & & \ C_4S_5 & & \ C_5S_3 & & $		3.080 3.016 2.891	TABL thresh the fir state.	E I: Ene olds with st two qu	rgy (in Ge in the mode arks are in	V) of the ba el (1). Σ stan a spin 1 sta	ryons involutes for a barnet Λ integrates and Λ	ved in the yon where n a spin 0
C_5S_4 C_5S_5 Coupled Thresholds		2.997 3.034 2.767 2.570, 2.630	<u>aqQ(2</u> 1.372	2)	$ \begin{array}{c} qqQ'(\Lambda) \\ \hline 1.258 \end{array} $		(Σ)	$\begin{array}{c} QQ'q(\Sigma) \\ \hline 1.109 \end{array}$

What about pentaquarks?: (QQqqq)

AL1
$$V(r) = -\frac{3}{16} \tilde{\lambda}_i \cdot \tilde{\lambda}_j \left[\lambda r - \frac{\kappa}{r} - \Lambda + \frac{V_{SS}(r)}{m_i m_j} \vec{\sigma}_i \cdot \vec{\sigma}_j \right],$$
$$V_{SS} = \frac{2 \pi \kappa'}{3} \frac{1}{\pi^{3/2} r_0^3} \exp(-r^2/r_0^2), \quad r_0(m_i, m_j) = A \left(\frac{2m_i m_j}{m_i + m_j}\right)^{-B}$$

Summary of four-quark states: BCN and CQC

	Qn <u>Qn</u> (Non exotic)	QQ <u>nn</u> (Exotic)		
Compact	No states	J ^P =1 ⁺		
Compact	Phys. Rev. D 76, 094022 (2007)	Phys. Rev. D 79, 074010 (2009)		
	$(I)J^{PC}=(0)1^{++} \Rightarrow X(3872)$ $(I)J^{PC}=(1)2^{++} (Exotic)$			
Molecular	Phys. Rev. Lett. 103, 222001 (2009) Phys. Rev. D 82, 054032 (2010)			

How the molecular QnQn states are formed in a quark model framework?

Coupled channel effect \Leftrightarrow Hidden color vectors

FIG. 1: Experimental masses of the different two meson systems made of a heavy and a light quark and their corresponding antiquarks $Qn\bar{Q}\bar{n}$ with Q = s, c, or b, for several sets of quantum numbers, J^{PC} . We have set as our origin of energies the $K\bar{K}$, $D\bar{D}$ and $B\bar{B}$ masses for the hidden strange, charm and bottom sectors, respectively.

LF.C., A.V., J.V., Phys. Lett. B 709, 358 (2012)

A quark-model mechanism for the XYZ mesons

PANIC 2017 / J. Vijande

4.- Unravelling the pattern of the XYZ mesons

Conclusions

• In multiquark studies, both CE and CM effects have to be included, color may generate conflicts between the preferred configurations.

• All-heavy tetraquarks are unstable in naive CE models.

• (QqQq) might have some opportunities of metastability below the MM threshold, which is extremely important for the existence of the X(3872) in the charm sector.

• (QQqq) are definitively the best candidates for stable multiquark states due to the striking M/m dependence in the CE limit. Besides, for non-identical quarks and antiquarks, string potentials offer good opportunities.

• Hidden heavy flavor pentaquarks are predicted in the chromomagnetic limit due to hidden-color components dynamics.

• Hidden flavor components (unquenching the quark model) offer a possible explanation of new experimental data and old problems in the meson and baryon spectra. There is not a proliferation of multiquarks, they are very rare.

• We have presented a plausible mechanism explaining the origin of the XYZ mesons: based on coupled-channel effects.

• We do not find evidence for charged and bottom partners of the X(3872). To answer this question is a keypoint to advance in the study of hadron spectroscopy.

Theory: Predictions

T. Barnes et al., Phys. Rev. D72, 054026 (2005)

Chromoelectric central potential:
$V(r) = -\frac{4}{3} \frac{\alpha_s(r)}{r} + br$
Chromomagnetic spin-spin correction

 $\frac{4\alpha_{s}(r)}{3m_{i}m_{j}} \left\{ \frac{8\pi}{3} \vec{S_{i}} \cdot \vec{S_{j}} \, \delta^{3}(\vec{r_{ij}}) + \frac{1}{r_{ij}^{3}} \left[\frac{3\vec{S_{i}} \cdot \vec{r_{ij}} \vec{S_{j}} \cdot \vec{r_{ij}}}{r_{ij}^{2}} - \vec{S_{i}} \cdot \vec{S_{j}} \right] \right\}$

Chromomagnetic spin-orbit term:

$$H_{ij}^{s.o.(cm)} = \frac{4\alpha_s(r)}{3r_{ij}^3} \left(\frac{1}{m_i} + \frac{1}{m_j}\right) \left(\frac{\vec{S}_i}{m_i} + \frac{\vec{S}_j}{m_j}\right) \cdot \vec{L}$$

$$H_{ij}^{s.o.(tp)} = \frac{-1}{2r_{ij}} \frac{\partial V(r)}{\partial r_{ij}} \left(\frac{\vec{S}_i}{m_i^2} + \frac{\vec{S}_j}{m_j^2}\right) \cdot \vec{L}$$

$$\frac{1}{\sqrt{2}(1^3P_2)} \chi_1(1^3P_1) \chi_0(1^3P_0)$$

Multiplet		State	Expt. Input (NR)		Theor.		
					NR	GI	
	1S	$\frac{J/\psi(1^3{\rm S}_1)}{\eta_c(1^1{\rm S}_0)}$	3096.87 ± 0.04 2979.2 ± 1.3	3097 2979	3090 2982	3098 2975	
	28	$\begin{array}{l} \psi'(2^3{\rm S}_1) \\ \eta'_c(2^1{\rm S}_0) \end{array}$	3685.96 ± 0.09 3637.7 ± 4.4	3686 3638	3672 3630	3676 3623	
	3S	$\begin{array}{l} \psi(3^{3}{\rm S}_{1}) \\ \eta_{c}(3^{1}{\rm S}_{0}) \end{array}$	4040 ± 10	4040	4072 4043	4100 4064	
	4S	$\begin{array}{l} \psi(4^{3}{\rm S}_{1}) \\ \eta_{c}(4^{1}{\rm S}_{0}) \end{array}$	4415 ± 6	4415	4406 4384	4450 4425	
	1P	$\begin{array}{l} \chi_2(1^3\mathrm{P}_2) \\ \chi_1(1^3\mathrm{P}_1) \\ \chi_0(1^3\mathrm{P}_0) \\ h_c(1^1\mathrm{P}_1) \end{array}$	$\begin{array}{c} 3556.18 \pm 0.13 \\ 3510.51 \pm 0.12 \\ 3415.3 \pm 0.4 \\ \text{see text} \end{array}$	3556 3511 3415	3556 3505 3424 3516	3550 3510 3445 3517	
	2P	$\begin{array}{l} \chi_2(2^3{\rm P}_2) \\ \chi_1(2^3{\rm P}_1) \\ \chi_0(2^3{\rm P}_0) \\ h_c(2^1{\rm P}_1) \end{array}$			3972 3925 3852 3934	3979 3953 3916 3956	
	3P	$\begin{array}{c} \chi_2(3^3{\rm P}_2) \\ \chi_1(3^3{\rm P}_1) \\ \chi_0(3^3{\rm P}_0) \\ h_c(3^1{\rm P}_1) \end{array}$			4317 4271 4202 4279	4337 4317 4292 4318	
	1D	$\begin{array}{l} \psi_3(1^3\mathrm{D}_3) \\ \psi_2(1^3\mathrm{D}_2) \\ \psi(1^3\mathrm{D}_1) \\ \eta_{c2}(1^1\mathrm{D}_2) \end{array}$	3769.9 ± 2.5	3770	3806 3800 3785 3799	3849 3838 3819 3837	
	2D	$\begin{array}{l} \psi_3(2^3{\rm D}_3) \\ \psi_2(2^3{\rm D}_2) \\ \psi(2^3{\rm D}_1) \\ \eta_{c2}(2^1{\rm D}_2) \end{array}$	4159 ± 20	4159	4167 4158 4142 4158	4217 4208 4194 4208	

Symmetry breaking

 $\checkmark QM \Rightarrow Min (p^2 + x^2 + \lambda x) < Min (p^2 + x^2) \Rightarrow Min (H_{even} + H_{odd}) < Min (H_{even})$ $\checkmark Min (M^+ M^+ m^- m^-) < Min (\mu^+ \mu^+ \mu^- \mu^-), 2\mu^{-1} = M^{-1} + m^{-1}$

□ They have the same threshold

No!!

$$\frac{\vec{p}_1^2}{2M} + \frac{\vec{p}_2^2}{2M} + \frac{\vec{p}_3^2}{2m} + \frac{\vec{p}_4^2}{2m} + V = \left[\sum_i \frac{\vec{p}_i^2}{2\mu} + V\right] + \left(\frac{1}{4M} - \frac{1}{4m}\right) \left[\vec{p}_1^2 + \vec{p}_2^2 - \vec{p}_3^2 - \vec{p}_4^2\right]$$

 $\Rightarrow Min (H_{C-even} + H_{C-odd}) < Min (H_{C-even})$ $\Rightarrow H_2 is more stable tan Ps_2$

Breaking particle symmetry

 $\Box \text{ Thus } (M^+ m^+ M^- m^-) \text{ more stable than } (\mu^+ \mu^+ \mu^- \mu^-) ????$

$$\frac{\vec{p}_1^2}{2M} + \frac{\vec{p}_2^2}{2M} + \frac{\vec{p}_3^2}{2M} + \frac{\vec{p}_4^2}{2M} + V = \left[\sum_i \frac{\vec{p}_i^2}{2\mu} + V\right] + \left(\frac{1}{4M} - \frac{1}{4M}\right) \left[\vec{p}_1^2 + \vec{p}_3^2 - \vec{p}_2^2 - \vec{p}_4^2\right]$$

 \Rightarrow Symmetry breaking benefits more to (M⁺M⁻)+(m⁺m⁻)

 \Rightarrow One may expect some kind of metastability below (M⁺m⁻)+(m⁺M⁻)

In short: (Un)favorable symmetry breaking can (spoil)generate stability

✓ Equal-mass case: Asymmetry in the potential energy

$$H = \sum_{i} \frac{\vec{p}_{i}^{2}}{2m} + \sum_{i < j} g_{ij} V(r_{ij}), \quad \sum_{i < j} g_{ij} = 2$$

 $\Rightarrow \text{Equal } \mathbf{g}_{ij} \text{ gives the highest energy} \\\Rightarrow \text{The broader the distribution of } \mathbf{g}_{ij} \text{ gives the lower energy}$

(abcd)	V(r _{ij})	G _{ij}	g	Δg	
Threshold $(1,3)+(2,4)$	$-1/r_{ij}, r_{ij}$	{0,0,1,0,1,0}	1/3	0.52	
Ps ₂	-1/r _{ij}	$\{-1,1,1,1,1,-1\}$	1/3	1.03	
$ T\rangle \equiv [(qq)_3(qq)_3]$	$-1/r_{ij}$, r_{ij}	{1/2,1/2,1/4,1/41/4,1/4}	1/3	0.13	
$ \mathbf{M}\rangle \equiv [(\mathbf{q}\mathbf{q})_6(\mathbf{q}\mathbf{q})_6]$	$-1/r_{ij}, r_{ij}$	{-1/4,-1/4,5/8,5/8,5/8,5/8}	1/3	0.45	
\Rightarrow Ps ₂ favored compared to quark models \Rightarrow Mixing effects do not help much					