

Studies of missing energy decays at Belle II

Yinghui GUAN (Indiana University & KEK) On behalf of the Belle II Collaboration

Sept.1 - 5, PANIC2017, Beijing

Bellell Detector

- SuperKEKB: e⁺e⁻ collider at sqrt(s) =10.58GeV, at KEK, Japan
- Produce B mesons via $\Upsilon(4S) \rightarrow B\overline{B}$

KL and muon detector Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

> Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward)

> > positrons (4 GeV)

Belle II TDR, arXiv: 1011, 0352

- Improve vertex resolution
- Particle ID: 4 σ K/pi separation at 1-3.5 GeV/c.
- EM Calorimeter: waveform sampling; low pileup, better resolution.

EM Calorimeter

electrons (7 GeV)

2 layers Si Pixels (DEPFET) +

4 layers Si double sided strip DSSD

Central Drift Chamber Smaller cell size, long lever arm

Vertex Detector

CsI(TI), waveform sampling electronics

• KLM: RPC+Scintillators, better K_L efficiency.

Motivation

- (Semi-)Leptonic and rare B decays are important to probe new physics (NP).
 Anomalies are already observed in data.
- With 50 ab⁻¹ collected at Belle II experiment one should be able to resolve the observed anomalies and search NP.
- Experimental challenging: one missing neutrino or multiple missing neutrinos.
- At *B*-factories, *B*-tagging tool is powerful, one *B* meson can be fully reconstructed (hadronic-tagging) providing constraints for the other *B*, suppressing backgrounds. Ideal place to measure rare decays with missing energy.

 Semi-leptonic tagging is also available, even has better sensitivities in some cases.

Full Event Interpretation (FEI)

- Belle already employed Full Reconstruction (FR) successfully.
- Belle II: Full Event Interpretation (FEI): more inclusive, more automation and analysis-specific optimizations.
- Hierarchical approach
 - A multivariate classier (MVC) is trained for finalstate particle candidates and intermediate particle candidates classification.
 - The MVC is trained for each employed decay channel.
 - Combine all information into a single value, the signal-probability.
- FEI can unify the hadronic and semi-leptonic and inclusive tagging into a single algorithm.

Tag	FR^8 @ Belle	FEI @ Belle MC	FEI @ Belle II MC
Hadronic B^+	0.28~%	0.49~%	0.61~%
Semileptonic B^+	0.67~%	1.42~%	1.45~%
Hadronic B^0	0.18~%	0.33%	0.34~%
Semileptonic B^0	0.63%	1.33%	1.25~%

search NP in $B^+ \rightarrow \tau^+ \nu_{\tau}$

5

$$\mathcal{B}(B^+ \to \tau^+ \nu_{\tau})_{\rm SM} = \frac{G_F^2 m_B m_{\tau}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_{B\bullet}$$
$$\mathcal{B}_{(B \to \tau \nu)} = \mathcal{B}_{SM} \times \left(1 - \tan^2 \beta \frac{m_{B^{\pm}}^2}{m_{H^{\pm}}^2} \right)$$

- Hadronic tagging
- dominate backgrounds: $B^- \rightarrow D^{(*)0} \ell^- \bar{\nu}_{\ell}$ $[0.72^{+0.27}_{-0.25}(\text{stat}) \pm 0.11(\text{syst})] \times 10^{-4}$

- Branching ratio depends strongly on the mass of the lepton due to helicity suppression. Thus $B^+ \rightarrow \tau^+ v_{\tau}$ is expected to have the largest leptonic branching fraction.
- NP could significantly suppress or enhance the branching ratio i.e. via exchange a charged Higgs boson from supersymmetry or from two-Higgs doublet models (2HDM).
- In the absence of NP, this channel provides a direct determination of the *B* decay constant f_B and the CKM matrix V_{ub}.
 - Semi-leptonic tagging (agree with Had. tag and SM)

 $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = [1.25 \pm 0.28(\text{stat.}) \pm 0.27(\text{syst.})] \times 10^{-4}$

$B^+ \rightarrow \tau^+ v_{\tau}$ prospect at Belle II

- Analysis on Belle II full simulation using hadronic B reconstruction.
- Signal yields extracted from fit to extra neutral energy.
- The extra energy resolution at Belle II is better than Belle despite the increased beam background.

Comparison with Belle hadronic tag.
 1 ab⁻¹ equivalent statistics

$E_{\rm ECL}$	<	$< 0.25 { m GeV}$
	# background events	1348
Belle II	# signal events	136
	signal efficiency (‰) $<$	1.6
	# background events	365
Belle	# signal events	60
	signal efficiency (‰) \leq	0.7

• Extrapolation at full Belle II statistics

	Integrated Luminosity (ab^{-1})	50
	statistical uncertainty (%)	4.1
hadronic tag	systematic uncertainty (%)	4.6
	total uncertainty (%)	6.2
	statistical uncertainty (%)	2.7
semileptonic tag	systematic uncertainty $(\%)$	4.5
	total uncertainty (%)	5.3

Search NP in $B \rightarrow D^{(*)} \tau^+ v_{\tau}$

- In the Standard Model (SM), the only difference between $B \to D^{(*)} \tau^+ v_{\tau}$ and $B \to D^{(*)} \mu^+ v_{\mu}$ is the mass of the lepton
- The ratio of them is sensitive to additional amplitudes, i.e. involving an intermediate charged Higgs boson.
- NP: type-II-2HDM (charged Higgs boson appears), Leptoquarks(LQ) model...
- NP could affect this decay topology in two ways:
 - Branching fraction
 - τ polarization

 $R(D^{(*)})$ in $B \rightarrow D^{(*)} \tau^+ v_{\tau}$

Test for lepton universality using the ratio typically:

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})} \quad (\ell = e, \mu)_{\pm}$$

SM: R(D) = 0.300 +- 0.008 Phys. Rev. D 92, 034506 (2015) R(D*) = 0.252 +- 0.003 Phys. Rev. D 85, 094025 (2012) BaBar PRL 109 101802 (2012) PRD 88 072012 (2013) Belle PRD 92 072014 (2015) PRD 94, 072007 (2016) PRL 118, 211801 (2017) arxiv1603.06711 LHCb PRL 115 111803 (2015)

• Current world average for $R(D^{(*)})$ is in ~4.1 σ tension with SM!

PRD 94 072007 (2016) SL tag

τ Polarization in $B \rightarrow D^{(*)} \tau^+ v_{\tau}$

$$P_{\tau}(D^*) = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}$$

$$\Gamma^{+(-)} \text{ for right-(left-)handed } \tau$$

$$R(D^*) = 0.270 \pm 0.035(\text{stat})^{+0.028}_{-0.025}(\text{syst}),$$

$$P_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat})^{+0.21}_{-0.16}(\text{syst}).$$

Compatibility with the SM.

 $P_{\tau}(D^*)_{\text{SM}} = -0.497 \pm 0.013$ Phys. Rev. D 87, 034028 (2013)

First measurement of the tau polarization in this decay.

First use tau had. decays in $_B \rightarrow D^{(*)} \tau^+ v_{\tau}$

 $\tau^- \rightarrow \pi^- v_\tau \ \tau^- \rightarrow \rho^- v_\tau$

Belle PRL 118, 211801 (2017) had. tag

$B \rightarrow D^{(*)} \tau^+ v_{\tau}$ prospect at Belle II

 τ (\mathbf{L}

- Current measurements are statistically limited, dominant systematics from
 - limited MC -> larger at Belle II
 - limited knowledge of dominant bkg. (involving soft pions) —>dedicated studies with large data sample at Belle II
- With higher statistics, study polarization and q² distributions, essential to distinguish NP.

	5 ab^{-1}	50 ab^{-1}
R_D	$(6.0 \pm 3.9)\%$	$(2.0 \pm 2.5)\%$
R_{D^*}	$(3.0\pm2.5)\%$	$(1.0\pm2.0)\%$
$P_{-}(D^{*})$	0.18 ± 0.08	0.06 ± 0.04

the first and the second values are the expected statistical and systematic errors.

Uncertainties at Belle II

- Flavor-changing neutral-current (FCNC) is prohibited in SM at tree-level, can occur via one-loop box or electroweak penguin diagrams.
- Golden mode at Bellell, theoretically very clean (in contrast to b—>sl⁺l⁻): free of uncertain long-distance effects (ρ, J / φ, φ'...)
- Highly sensitive to non-standard *Z*-coupling and other electroweak penguin effects.
- SM predictions [1] JHEP 02 184, 2015 [2] Belle2-MEMO-2016-007

Mode	\mathcal{B} [10 ⁻⁶] Ref. [2]	\mathcal{B} [10 ⁻⁶] Ref. [1]
$B^+ \to K^+ \nu \bar{\nu}$	$3.98 \pm 0.43 \pm 0.19$	4.68 ± 0.64
$B^0 ightarrow K^0_{ m S} u ar{ u}$	$1.85 \pm 0.20 \pm 0.09$	2.17 ± 0.30
$B^+ \to K^{*+} \nu \bar{\nu}$	$9.91 \pm 0.93 \pm 0.54$	10.22 ± 1.19
$B^0 \to K^{*0} \nu \bar{\nu}$	$9.19 \pm 0.86 \pm 0.50$	9.48 ± 1.10

arXiv: 1702.03224 (semi-leptonic tagging)

BaBar PRD 87, 112005(2013) Belle PRD 87, 111103(R) (2013) arxiv: 1702.03224

Background in $B \rightarrow K^{(*)} \upsilon \upsilon$

12

- - Hadronic tagging PRD 87, 111103(R) (2013) Semi-leptonic tagging arxiv: 1702.03224

- With missing K_L , background can mimic signal.
- Require good background-rejection algorithm -> veto K_I^0
- Belle II will have better K_I^0 ID, better taking efficiencies, and 30% better K_s^0 efficiency.
- Systematics caused by statistical uncertainty of background model -> Belle II will allow more dedicated studies.

$B \rightarrow K^{(*)} \upsilon \upsilon$ sensitivity at Belle II

$$B \to K^+ \upsilon \upsilon \quad B \to K^* \upsilon \upsilon$$

will be observed with about 18 ab⁻¹

- With 50 ab⁻¹, the sensitivities of BF will be 12% and 11%.
- Once the K* modes are observed, measurements of differential BF and K* polarization will be important subjects.

Mode	$B [10^{-6}]$	Efficiency	$N_{\text{Backg.}}$	$N_{\rm Sig-exp.}$	$N_{\rm Backg.}$	$N_{\rm Sig-exp.}$	Statistical	Total
		Belle	711 fb^{-1}	$711 \ {\rm fb}^{-1}$	50 ab^{-1}	$50 ext{ ab}^{-1}$	error	Error
		$[10^{-4}]$	Belle	Belle	Belle II	Belle II	$50 { m ~ab^{-1}}$	
$B^+ \to K^+ \nu \bar{\nu}$	4.68	5.68	21	3.5	2960	245	20%	22%
$B^0 ightarrow K^0_{ m S} u ar{ u}$	2.17	0.84	4	0.24	560	22	94%	94%
$B^+ \to K^{*+} \nu \bar{\nu}$	10.22	1.47	7	2.2	985	158	21%	22%
$B^0 o K^{*0} u ar{ u}$	9.48	1.44	5	2.0	704	143	20%	22%
$B \to K^* \nu \bar{\nu}$ combined							15%	17%

Summary

- e⁺e⁻ collider is the ideal place for studies on decays with large missing energy.
- Belle II will have the capability to perform studies of B meson decays with large missing energy in the final state (N_v>1) with unprecedented precision.

$$B^{+} \to l^{+} V_{l} \qquad B \to D^{(*)} \tau^{+} V_{\tau} \qquad B \to h \upsilon \overline{\upsilon}$$

- Previously observed anomalies (such those observed in $B \rightarrow D^{(*)}\tau^+v_{\tau}$) can be resolved with few $ab^{-1}of$ data, while very rare decays $B \rightarrow hv\overline{v}$ can be probed at 5 σ level with the full belle II data (50 ab^{-1}).
- Belle II will have strong impact in the searches for new physics for the next decade.
- Belle II Physics Running: late 2018/ early 2019 (full detector). → Jake Bennett's talk

Belle II Beam Background

Touschek effect

- Intra bunch scattering
- Rate \propto the inverse beam size, number of bunches et.al
- Suppressed with movable collimators

Beam gas

- Coulomb and bremsstrahlung scattering by the residual gas atoms
- Rate \propto the vacuum level and the beam current

Synchrotron radiation

• Rate ∝ the beam energy squared and magnetic field squared

• Physical backgrounds • Bhabha ee $\rightarrow(\gamma)$ ee • Two photon: ee \rightarrow eeee • Rate \propto luminosity Bhabha e^{\pm} e^{\pm} f^{μ} Dominant when luminosity is high

. .

$B^+ \rightarrow l^+ v_l$ prospect at Belle II

Expected errors with the Belle full data sample, and 5 ab⁻¹ and 50 ab⁻¹ of Belle II data.

■ B → τv : 5% ■ B → μv , ev, |v|y : 10%

Total Exp Statistical Systematic (reducible, irreducible) $\mathcal{B}(B \to \tau \nu)$ (had. tagged) $711 \ {\rm fb}^{-1}$ 38.040.8(14.2, 4.4) 5 ab^{-1} 14.4(5.4, 4.4)15.8 50 ab^{-1} 4.6(1.6, 4.4)6.4 $\mathcal{B}(B \to \tau \nu)$ (semileptonic tagged) (18, +6.0)+31.2711 fb⁻¹ 24.8-32.2 5 ab^{-1} (6.2, +6.0)+12.28.6 -14.4(2.0, +6.0)+6.8 50 ab^{-1} 2.8-10.2 $\mathcal{B}(B \to \mu \nu)$ (had. tagged) 711 fb⁻¹ $< 5.6 imes 10^{-6}$ (16.2, 2.4) 5 ab^{-1} $< 8.0 \times 10^{-7}$ (6.1, 2.4) 50 ab^{-1} 37 (1.9, 2.4) $37 (2.7\sigma)$ $\mathcal{B}(B \to \mu \nu)$ (untagged) $253 \ \mathrm{fb}^{-1}$ $< 1.7 \times 10^{-6}$ (16.4, 3.0) 5 ab^{-1} (6.2, 3.0) 5σ 50 ab^{-1} (2.0, 3.0) $\gg 5\sigma$ $\mathcal{B}(B \to e\nu)$ (had. tagged) $711 {\rm ~fb^{-1}}$ $< 5.2 imes 10^{-6}$ (15.8, 2.2) 5 ab^{-1} $< 7.4 \times 10^{-7}$ (2.7, 2.2) $<7.4\times10^{-8}$ 50 ab^{-1} (0.8, 2.2) $\mathcal{B}(B \to e\nu)$ (untagged) $253 {\rm ~fb^{-1}}$ $< 9.8 \times 10^{-7}$ (15.8, 3.0) $<2.2\times10^{-7}$ 5 ab^{-1} (4.0, 3.0) $<7.0\times10^{-8}$ 50 ab^{-1} (1.1, 3.0)

Backgrounds in $B \rightarrow D^{(*)} \tau^+ v_{\tau}$

$B \rightarrow D^{(*)} \tau^+ \nu_{\tau}$ Test type-II-2HDM

- All the results are consistent with, but always larger than the SM
- Large value of $\tan\beta H \pm \text{seems}$ disfavored

Charged Higgs in Type-II 2HDM (2)

- Favored regions seem inconsistent
- All the results are consistent with, but always larger than the SM
- Large value of $tan\beta/m_{H^{\pm}}$ seems disfavored

$B \rightarrow D^{(*)} \tau^+ v_{\tau}$ Test R₂-type LQ

- Leptoquarks(LQ) which couple to lepton-quark pair, carrying color, electric charge, baryon and lepton number. Unified description of leptons and quark.
- 6 LQ models in $b \rightarrow c\tau v$
- $B \rightarrow D^{(*)} \tau^+ v_{\tau}$ is sensitive to the tensor operator
- R₂-type LQ model is good candidate for compatibility test.

arxiv1603.06711 belle pub#496

Assignment of quantum numbers

	S_1	S_3	R_2	V_2	U_1	U_3
spin	0	0	0	1	1	1
F = 3B + L	-2	-2	0	-2	0	0
$SU(3)_C$	3*	3*	3	3*	3	3
$SU(2)_L$	1	3	2	2	1	3
$U(1)_{Y=Q-T_3}$	1/3	1/3	7/6	5/6	2/3	2/3
Operators	$(\mathcal{O}_{V_1},\mathcal{O}_{S_2},\mathcal{O}_T)$	\mathcal{O}_{V_1}	$(\mathcal{O}_{S_2},\mathcal{O}_T)$	\mathcal{O}_{S_1}	$(\mathcal{O}_{V_1},\mathcal{O}_{S_1})$	\mathcal{O}_{U_3}

$B \rightarrow D^{(*)} \tau^+ v_{\tau}$ prospect at Belle II

Extrapolation of the Babar result. Errors are given in percent.

	Statistical	Systematic	Total Exp
		(reducible, irreducible)	
R(D)			
423 fb^{-1}	13.1	(9.1, 3.1)	16.2
5 ab^{-1}	3.8	(2.6, 3.1)	5.6
50 ab^{-1}	1.2	(0.8,3.1)	3.4
$R(D^*)$			
423 fb^{-1}	7.1	(5.2, 1.9)	9.0
5 ab^{-1}	2.1	(1.5, 1.9)	3.2
50 ab^{-1}	0.7	(0.5, 1.9)	2.1

- SL background modelling will dominate error @ 50 ab⁻¹.
- Important to investigate with improved precision at Belle II

- Not only $R(D^{(*)})$ but also kinematics such as polarizations and q^2

7

3

2

$B \rightarrow h \upsilon \overline{\upsilon}$ sensitivity at Belle II

	Limit or total error
$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (4.4 \pm 1.5) \times 10^{-6}$	
0.711 ab^{-1}	$< 5.5 imes 10^{-5}$
5 ab^{-1}	$< 2.1 imes 10^{-5}$
50 ab^{-1}	$< 0.7 imes 10^{-5}$
$\mathcal{B}(B^0 \to K^0_S \nu \bar{\nu}) = (2.2 \pm 0.8) \times 10^{-6}$	
0.711 ab^{-1}	$< 9.7 imes 10^{-5}$
5 ab^{-1}	$< 3.7 imes 10^{-5}$
50 ab^{-1}	$< 1.2 imes 10^{-5}$
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu}) = (6.8 \pm 2.0) \times 10^{-6}$	
0.711 ab^{-1}	$< 5.5 imes 10^{-5}$
5 ab^{-1}	$< 2.1 imes 10^{-5}$
50 ab^{-1}	$< 0.7 imes 10^{-5}$
${\cal B}(B^0 o \pi^+ \nu \bar{ u}) \sim 1 imes 10^{-8}$	
0.711 ab^{-1}	$< 9.8 imes 10^{-5}$
5 ab^{-1}	$< 3.7 imes 10^{-5}$
50 ab^{-1}	$< 1.2 imes 10^{-5}$
${\cal B}(B^0 o \pi^0 u ar u) \sim 0.5 imes 10^{-8}$	
0.711 ab^{-1}	$< 6.9 imes 10^{-5}$
5 ab^{-1}	$< 2.6 imes 10^{-5}$
50 ab^{-1}	$< 0.8 imes 10^{-5}$