Light hadron spectroscopy at BESIII

Xingtao HUANG Shandong University, Jinan, CHINA (On behalf of BESIII Collaboration)

PANIC 2017

Outline

■BEPCII and BESIII Selected topics on Light Hadron spectroscopy ■Light Meson spectroscopy **X**(1835) and $X(p\overline{p})$ $\blacksquare J/\psi \to \gamma \eta K_S^0 K_S^0$ $I/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ ■Glueball Searches **PWA of** $J/\psi \rightarrow \gamma \eta \eta$ **MIPWA of** $J/\psi \rightarrow \gamma \pi^0 \pi^0$ **PWA of** $J/\psi \rightarrow \gamma \phi \phi$ ■Exotic Search $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$ Summary

Beijing Electron Positron Collider II (BEPCII)

Super-Conducting Magnet 1.0 T (2009) 0.9 T(2012)

Electromagnetic **Calorimeter** (**EMC**) CsI (Tl) $\sigma_{\rm E}/\sqrt{\rm E}$ = 2.5% (1 GeV) $\sigma_{z,\phi} = 0.5 - 0.7 \text{ cm}/\sqrt{E}$

Acceptance: 93% 4π

Data Collected at BESIII

World largest J/ ψ , ψ (3686), ψ (3770), ... produced directly from e⁺e⁻ collision — ideal factory to study hadron spectroscopy PANIC 2017 4

Outline

BEPCII and BESIII

Selected topics on Light Hadron spectroscopy

Light Meson spectroscopy X(1835) and X($p\bar{p}$) $J/\psi \rightarrow \gamma\eta K_S^0 K_S^0$ $J/\psi \rightarrow \gamma\eta' \pi^+ \pi^-$ Glueball Searches PWA of $J/\psi \rightarrow \gamma\eta\eta$ MIPWA of $J/\psi \rightarrow \gamma\pi^0\pi^0$ PWA of $J/\psi \rightarrow \gamma\phi\phi$ Exotic Search $\chi_{c1} \rightarrow \eta\pi^+\pi^-$ Summary

$X(p\overline{p})$

Discovered by BESII in $J/\psi \rightarrow \gamma p \bar{p}$

Confirmed by BESIII and CLEO-c in $\psi(3686) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \gamma p\bar{p}$

Confirmed by BESIII in $J/\psi \rightarrow \gamma p \bar{p}$ and its J^{pc} determined by PWA

X(1835)

 $M(\text{MeV}/c^2)$

 1522.7 ± 5.0

 1836.5 ± 3.0

 2122.4 ± 6.7

 2376.3 ± 8.7

Resonance

 $f_1(1510)$

X(1835)

X(2120)

X(2370)

Discovered by BESII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta$

• $M = 1836.5^{+19}_{-5} \pm 3.0^{+5.6}_{-2.1} MeV/c^2$

 $\Gamma(\text{MeV}/c^2)$

 190.1 ± 9.0

 48 ± 11

 83 ± 16

 83 ± 17

- $\Gamma = 190 \pm 9^{+38}_{-36} MeV/c^2$
- Angular distribution is consistent w
- Observed two additional structures >

Nevent

 230 ± 37 4265 ± 131

 647 ± 103

 565 ± 105

$\eta' \pi^+ \pi^-$ $\eta' \pi^+ \pi^-$ with two η' decays μ^2 with 0 ⁻	$\begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 1.4 \\ 2.0 \\ 1.4 \\ 2.0 \\ 2.6 $
> 2 GeV/c ² Phys. Rev. Lett. 106, 0720	Ο2 (2011) Μ(π΄πη) (GeV/C⁻)
$> 5.7\sigma$ $> 5.7\sigma$ $> 20\sigma$ $> 20\sigma$ $> 6.4\sigma$ $= 100$ 0 $= 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.6 + 2.6 + 1.6 + 1.8 + 2.0 + 2.2 + 2.6 + 1.6 + 1.8 + 2.0 + 2.2 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.4 + 2.6 + 1.4 + 1.6 + 1.8 + 2.0 + 2.4 + 1.6 + 1.8 + 2.0 + 2.4 + 1.6 + 1.8 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.8 + 1.6 + 1.8 + 1.6 + 1.8 + 1.8 + 1.6 + 1.8 + 1.8 + 1.6 + 1.8 + 1$	$\begin{array}{c} 5000 \\ 4000 \\ 4000 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

PANIC 2017

Phys. Rev. Lett. 95, 262001 (2005)

Observation of X(1835) in $J/\psi \rightarrow \gamma \eta K_S^0 K_S^0$

- ■1.3×10⁹ J/ψ events collected in 2009 and 2012
- Clear structure on mass spectrum of $K_S^0 K_S^0 \eta$ around 1.85 GeV/ c^2
- Strongly correlated to $f_0(980)$
- ■PWA for events :
 - $= \mathsf{M}(K_S^0 K_S^0) < 1.1 \text{ GeV}/c^2$ $= \mathsf{M}(K_S^0 K_S^0 \eta) < 2.8 \text{ GeV}/c^2$

Observation of X(1835) in $J/\psi \rightarrow \gamma \eta K_S^0 K_S^0$

■X(1835)

- J^{pc} determined to be 0⁻⁺
- $\blacksquare X(1835) \rightarrow \eta K_S^0 K_S^0$ (> 12.9 σ), dominated by $f_0(980)$ production
- $\blacksquare M = 1844 \pm 9^{+16}_{-25} MeV/c^2$
- $\blacksquare \ \Gamma = 192^{+20+62}_{-17-43} \ MeV/c^2$
- $\blacksquare B(J/\psi \to \gamma X(1835)) \cdot B(X(1835) \to \eta K_S^0 K_S^0) = (3.31^{+0.33+1.96}_{-0.30-1.29}) \times 10^{-5}$

Consistent with X(1835) parameters obtained from $J/\psi \to \gamma \eta' \pi^+ \pi^-$

■X(1560)

- $\blacksquare J^{pc} = 0^{-+}; X(1560) \to \eta K^0_S K^0_S \ (> 8.9 \ \sigma)$
- $\blacksquare \ M = 1565 \pm 8^{+0}_{-63} \ MeV/c^2$
- $\blacksquare \ \Gamma = 45^{+14+21}_{-13-28} \, MeV/c^2$
- Consistent with $\eta(1405)/\eta(1475)$ within 2.0 σ

X(1835) and X($p\overline{p}$)

PANIC 2017

Anomalous line shape of $\eta' \pi^+ \pi^-$ near the $p\overline{p}$ mass threshold in $J/\psi \to \gamma \eta' \pi^+ \pi^-$ Phys. Rev. Lett. 117, 042002 (2016)

■Use 1.09 ×10⁹ J/ψ events collected by BESIII in 2012 ■Two decay modes of η'

 $\blacksquare \eta' \to \gamma \pi^+ \pi^-$

Clear peaks of X(1835), X(2120), X(2370), η_c and a structure near 2.6 GeV/ c^2

A significant distortion of the $\eta' \pi^+ \pi^-$ line shape near the $\mathbf{p}\overline{p}$ mass threshold

PANIC 2017

Anomalous line shape of $\eta' \pi^+ \pi^-$ near the $p\overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

A simple Breit-Wigner function to describe the X(1835) lineshape fails near the pp mass threshold. Model 1: Flatté lineshape with strong coupling to pp and one additional, narrow Breit-Wigner at ~1920 MeV/c²

Model 2: coherent sum of X(1835) Breit-Wigner and one additional narrow Breit-Wigner at ~1870 MeV/c²

Anomalous line shape of $\eta' \pi^+ \pi^-$ near the $p\overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Both models fit the data well with almost equally good quality
 - Cannot distinguish them with current data
 - Suggest the existence of a state, either a broad state with strong couplings to $p\overline{p}$, or a narrow state just below the $p\overline{p}$ mass threshold
 - Support the existence of a $\mathbf{p}\overline{p}$ molecule-like state or bound state
- ■To understand the nature of the state(s)
 - Take more data
 - Study line shapes in other related decay channels

Outline

■Glueball Searches **PWA of** $J/\psi \rightarrow \gamma \eta \eta$ **MIPWA of** $J/\psi
ightarrow \gamma \pi^0 \pi^0$ **PWA of** $J/\psi \rightarrow \gamma \phi \phi$

Glueballs

Formed by gluon-gluon interaction
 Predicted by QCD
 Lattice QCD prediction

■ 0⁺⁺ground state: 1~2 GeV/c²

■ 2⁺⁺ground state: 2.3~2.4 GeV/c²

 $\blacksquare 0^{-+}$ ground state: 2.3~2.6 GeV/c²

Experimentally, some candidates, but not established

 $\blacksquare f_0(1370), f_0(1500), f_0(1710), f_J(2220), \dots$

 $\blacksquare J/\psi$ radiative decays are believed to be an ideal place to search for glueballs

Phys. Rev. D 73, 014516 (2006)

PANIC 2017

PWA of $J/\psi \rightarrow \gamma \eta \eta$

- Use 225 × 10⁶ J/ψ events collected by BESIII in 2009
- $\blacksquare f_0(1700)$ and $f_0(2100)$ are dominant scalars
- ■ $f_0(1500)$ exists (8.2 σ)
- $\blacksquare f_2'(1525)$ is the dominant tensor
- $f_2(1810)$ and $f_2(2340)$ exist (6.4 σ and 7.6 σ)

■ No evidence for $f_I(2220)$

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
<i>f</i> ₀ (1710)	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ
$f_0(2100)$	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9σ
$f'_2(1525)$	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0σ
<i>f</i> ₂ (1810)	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
<i>f</i> ₂ (2340)	$2362^{+31+140}_{-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) imes 10^{-5}$	7.6σ

- Br. of $f_0(1700)$ and $f_0(2100)$ are ~ 10 X larger than than of $f_0(1500)$
- Possible large overlap with LQCD predictions of 0⁺Glueball (PRL 110 021601)

Model Independent PWA of $J/\psi ightarrow \gamma \pi^0 \pi^0$

- More than 440,000 reconstructed events
- Background level ~1.8%

Model Independent PWA of $J/\psi ightarrow \gamma \pi^0 \pi^0$

- Extract amplitudes in each M(π⁰π⁰) mass bin
- Significant features of the scalar spectrum includes structures near 1.5, 1.7 and 2.0 GeV/c2
- f_2^{++} dominated by $f_2(1270)$
- Multi-solution problem in MIPWA is usually unavoidable.

Model Dependent PWA of global PWA fit is still needed to extract resonance parameters.

PWA of $J/\psi ightarrow \gamma \phi \phi$

- Besides $\eta(2225)$, little known on the pseduoscalar above 2 GeV
- New ressults help to map out the psedoscalar excitations and search for 0^{-+} glueball
- Use $1.3 \times 10^9 J/\psi$ events collected by BESIII in 2009 and 2012
- PWA procedure
 - Covariant tensor formalism
 - Data-driven background subtraction
 - Resonances are parameterized by relativistic Breit-Wigner with constant width
 - Resonances with significance > 5σ are selected as components in solution

PANIC 2017

Phys. Rev. D 93, 112011 (2016)

PWA of $J/\psi ightarrow \gamma \phi \phi$

Phys. Rev. D 93, 112011 (2016)

Resonance	M (MeV/ c^2)	$\Gamma (\text{MeV}/c^2)$	B.F. (×10 ⁻⁴)	Sig.
$\eta(2225)$	2216^{+4+21}_{-5-11}	185^{+12+43}_{-14-17}	$(2.40 \pm 0.10^{+2.47}_{-0.18})$	28 <i>o</i>
$\eta(2100)$	2050_{-24-26}^{+30+75}	$250^{+36+181}_{-30-164}$	$(3.30 \pm 0.09^{+0.18}_{-3.04})$	22σ
X(2500)	$2470^{+15+101}_{-19-23}$	230^{+64+56}_{-35-33}	$(0.17\pm 0.02^{+0.02}_{-0.08})$	8.8 <i>o</i>
$f_0(2100)$	2101	224	$(0.43\pm0.04^{+0.24}_{-0.03})$	24 <i>o</i>
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5 <i>o</i>
$f_2(2300)$	2297	149	$(0.44\pm0.07^{+0.09}_{-0.15})$	6.4 σ
$f_2(2340)$	2339	319	$(1.91\pm0.14^{+0.72}_{-0.73})$	11 <i>o</i>
0 ⁻⁺ PHSP			$(2.74\pm0.15^{+0.16}_{-1.48})$	6.8 <i>σ</i>

Dominant contribution from pseudoscalars

 \blacksquare η (2225) is confirmed

 \blacksquare η (2100) and X(2500) are observed with large sig.

Three tensor states

- $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$ are observed
- Strong production of $f_2(2340)$ is compatible with LQCD prediction for tensor glueball

• Well consistent with the results from Model Independent PWA

Outline

BEPCII and BESIII Selected topics on Light Hadron spectroscopy Light Meson spectroscopy X(1835) and $X(p\bar{p})$ $J/\psi \rightarrow \gamma\eta K_S^0 K_S^0$ $J/\psi \rightarrow \gamma\eta' \pi^+ \pi^-$ Glueball Searches $PWA \text{ of } J/\psi \rightarrow \gamma \eta \eta$ $MIPWA \text{ of } J/\psi \rightarrow \gamma \pi^0 \pi^0$ $PWA \text{ of } J/\psi \rightarrow \gamma \phi \phi$ Exotic Search $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Summary

Exotics ($J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+},...$)

■J^{PC} exotic particles: beyond the naïve quark model

Easily to distinguish from others due to the exotic J^{PC}

- ■Theoretically, LQCD predicts the lightest hybrid with exotic 1⁻⁺ is between 1.8 and 1.9 GeV, the Bag model also predicts an exotic 1⁻⁺ around or above 1.4 GeV
- Experimentally, $\pi_1(1400)$, $\pi_1(1600)$ were observed in πp reaction decay to η / η' / ρ + π

Amplitude Analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Phys. Rev. D 95, 032002 (2017)

 $\begin{array}{l} \blacksquare \chi_{c1} \text{ provides another suitable place to look for } 1^{-+} \\ \blacksquare \pi_1(1600) \text{ studied in } \chi_{c1} \text{ decays by CLEO-c} \\ \blacksquare \text{Only } \pi_1(1400) \text{ reported decaying to } \eta \pi \end{array}$

• World largest χ_{c1} sample (~ 35K) from 448.0×10⁶ ψ (3686) events

$$\Psi(3686) \to \gamma \ \chi_{c1} \to \gamma \ \eta \pi^+ \pi^-$$

Search for exotic meson with 1^{-+} in $\eta \pi$, $\eta' \pi$ and $\pi \pi$ final states

PANIC 2017

Amplitude Analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Decay	${\cal F} \ [\%]$	Significance $[\sigma]$	$\mathcal{B}(\chi_{c1} \to \eta \pi^+ \pi^-) \ [10^{-3}]$
$\eta\pi^+\pi^-$			$4.67 \pm 0.03 \pm 0.23 \pm 0.16$
$a_0(980)^+\pi^-$	$72.8 \pm 0.6 \pm 2.3$	> 100	$3.40 \pm 0.03 \pm 0.19 \pm 0.11$
$a_2(1320)^+\pi^-$	$3.8 \pm 0.2 \pm 0.3$	32	$0.18 \pm 0.01 \pm 0.02 \pm 0.01$
$a_2(1700)^+\pi^-$	$1.0 \pm 0.1 \pm 0.1$	20	$0.047 \pm 0.004 \pm 0.006 \pm 0.002$
$S_{Kar{K}}\eta$	$2.5 \pm 0.2 \pm 0.3$	22	$0.119 \pm 0.007 \pm 0.015 \pm 0.004$
$S_{\pi\pi}\eta$	$16.4 \pm 0.5 \pm 0.7$	> 100	$0.76 \pm 0.02 \pm 0.05 \pm 0.03$
$(\pi^+\pi^-)_S\eta$	$17.8 \pm 0.5 \pm 0.6$		$0.83 \pm 0.02 \pm 0.05 \pm 0.03$
$f_2(1270)\eta$	$7.8 \pm 0.3 \pm 1.1$	> 100	$0.36 \pm 0.01 \pm 0.06 \pm 0.01$
$f_4(2050)\eta$	$0.6 \pm 0.1 \pm 0.2$	9.8	$0.026 \pm 0.004 \pm 0.008 \pm 0.001$
Exotic candidates	\$		U.L. [90% C.L.]
$\pi_1(1400)^+\pi^-$	$0.58{\pm}0.20$	3.5	< 0.046
$\pi_1(1600)^+\pi^-$	$0.11{\pm}0.10$	1.3	< 0.015
$\pi_1(2015)^+\pi^-$	$0.06{\pm}0.03$	2.6	< 0.008

Most dominant two-body structure is from $a_0(980)\pi$ Observation of nonzero $a_0(980)$ coupling to the $\eta'\pi$ Observed $\chi_{c1} \rightarrow a_2(1700)\pi$ for the first time (> 17 σ) Measured upper limits for $\pi_1(1^{-+})$ in 1.4-2.0 GeV/c² region

Summary

■Highlights of latest results in light hadron spectroscopy from BESIII

Observation of X(1835) in $J/\psi \rightarrow \gamma \eta K_S^0 K_S^0$

• New decay mode of X(1835) $\rightarrow \eta K_S^0 K_S^0$ and J^{pc} determined to be 0⁻⁺

Observation of anomalous $\eta' \pi^+ \pi^-$ line shape near $\mathbf{p}\overline{p}$ mass threshold

• Support the existence of $\mathbf{p}\overline{p}$ bound state or molecule-like state

Partial wave analysis of $J/\psi
ightarrow \gamma\eta\eta$

• Strong production of $f_0(1700)$ and $f_0(2100)$

Model independent PWA of $J/\psi
ightarrow \gamma \pi^0 \pi^0$

• Useful information for 0⁺⁺ and 2⁺⁺ components

Partial wave analysis of $J/\psi
ightarrow \gamma \phi \phi$

• Many 0⁻⁺, 2⁺⁺ mesons observed

Amplitude Analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Clear evidence for a_2 (1700) in χ_{c1} decays and upper limit for π_1

More results come soon with BESIII continuing data taking

Thanks for your attention!