

Istituto Nazionale di Fisica Nucleare

Dark Photon search with PADME at LNF

Gabriele Piperno for the PADME collaboration

Particles and Nuclei International Conference - Beijing, China - September 3, 2017

The Dark Matter problem

Evidences:

- spiral galaxies
- Cosmic Microwave Background
- gravitational lensing
- galaxy clusters
- Big Bang Nucleosynthesis
- large scale structures

- stable (half life ~ universe age)
- cold (non relativistic)
- gravitational force
- non baryonic

Open questions:

- DM nature
- interaction(s) w/ SM
- A whole new dark sector?
- dark sector forces?

Dark Photon

Possible solution to the DM elusiveness: DM does not interact directly w/ SM, but by means of "portals".

The simplest model adds a U(1) gauge symmetry and its boson: the Dark Photon A'

- SM particles are neutral under this symmetrynew field couples to the
- SM w/ effective charge ɛq

Additionally the A' could (partially) explain the $(g-2)_{\mu}$ discrepancy

A' characteristics in the simplest model above:

- 1 MeV < $m_{A'}$ < 1 GeV
- ε ≈ 10⁻³

Purely indicative numbers: it has been recently discarded as a solution

Dark Photon production

In e⁺/e⁻ collisions Dark Photon can be produced in 3 main ways:

Dark Photon decay

Visible decays

If DM particles w/ $m_{DM} < m_{A'}/2$ do not exist:

A'→SM (visible) decays

• up to $2m_{\mu}$, BR(e⁺e⁻) = 1 (if $m_{A'} > 2m_e$)

A' lifetime proportional to: $1/(\alpha \epsilon^2 m_{A'})$

Invisible decays

If DM particles w/ $m_{DM} < m_{A'}/2$ exist:

- A' \rightarrow DM (invisible) decays w/ (likely) BR $\simeq 1$
- \bullet SM decays suppressed by a factor ϵ^2

 $1/(\alpha_D m_{A'})$

 α_D : A' coupling constant to the Dark Sector

Visible search status

Techniques:

beam dump (bremsstrahlung)

 A' decay products detection after high z target (A' production) + shield (SM absorption)

- fixed target (bremsstrahlung, annihilation)
 - bump hunt in invariant mass spectrum, displaced vertices
- meson decay
 - only if A' couples w/ quarks
 - old experiments reanalysis

 $(g-2)_{\mu}$ excluded in the simplest model, but still a lot of interest

Invisible search status

Techniques:

The PADME approach

A' search in e⁺e⁻ annihilations looking for missing mass (invisible decay) in a kinematically constrained condition

be limited: (Dark Photon, Axion Like Particles, Dark Higgs)

The detector

Detector top view (w/ signal)

Signal: • single γ in the calorimeter Beam (0.55T-550Mev) • nothing in the other detector components (50+ HEpV Beam (0.8T-1GeV) 20 82 mrad 1008 (96x) σ. ₽. , , 812 606 e⁻ 6⁺²⁶⁰ pVeto 200 11.6 14.2 Target SAC eVeto 50 E-Cal R2300 200 1000 3 m 10/18

Active target

Features:

- Diamond (low z, reduced brems.)
- Dim.: 20×20×0.1 mm³
- 16 horiz.×16 vert. active graphitic strips (average informations on beam)
- σ_{x-y} (beam position) < 2 mm
- in vacuum w/ movement system

Test detector results

11/18

Event

Electromagnetic calorimeter (1)

Features:

- σ_E ≈ (1-2)%/√E
 - high γ statistic
 - containment
- cluster time resolution < 1 ns
- angular resolution ≤ 1 mrad
- angular coverage: [20,93] mrad
- angular acceptance: [26,83] mrad
- central hole for brems. to SAC (faster)

Parameter Units:	r: $ ho$ g/cm ³	MP °C	X_0^* cm	R_M^* cm	dE^*/dx MeV/cm	λ_I^* cm	$ au_{ m decay}$ ns	$\lambda_{ m max}$ nm	$n^{ atural}$	Relative output [†]	Hygro- scopic?	d(LY)/dT $\%/^{\circ}C^{\ddagger}$
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s}	300^{s}	1.50	36 ^s	no	-1.9^{s}
							0.9^{f}	220^{f}		4.1^{f}		0.1^f
$\operatorname{CsI}(\operatorname{Tl})$	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^{s}	420^{s}	1.95	3.6^{s}	slight	-1.4
							6^{f}	310^{f}		1.1^{f}		
$PbWO_4$	8.3	1123	0.89	2.00	10.1	20.7	30^{s}	425^{s}	2.20	0.3^{s}	no	-2.5
							10^{f}	420^{f}		0.077^{f}		
$\mathrm{LSO}(\mathrm{Ce})$	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
LaBr ₃ (Ce) 5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2

616 BGO 2.1×2.1×23 cm³ @ 3 m from the target

Electromagnetic calorimeter (2)

Energy (MeV)

The LNF Beam Test Facility

PADME will be placed in the Beam Test Facility of the Laboratori Nazionali di Frascati (~Rome, IT)

	Parasiti (DAФNE	c mode working)	Dedicated mode				
	W/ target	W/o target	W/ target	W/o target			
Particle species	e⁺/e⁻ selectable by user	e⁺/e⁻ depending on DAΦNE mode	e ⁺ /e ⁻ selectable by user				
Energy [MeV]	25-500	510	25-700 (e ⁺) 25-700 (e ⁻)	250-730 (e ⁺) 250-530 (e ⁻)			
Energy spread	1% @ 500 MeV	1%	1%				
Rep. rate [Hz]	10- depending on	-49 DAФNE mode	1-49 selectable by user				
Pulse duration [ns]	1	0	1.5-40 selectable by user				
Intensity [particles/bunch]	1-10 ⁵ depending on energy	10 ⁷ -1.5 • 10 ¹⁰	1-10 ⁵ depending on energy	10 ³ -3 • 10 ¹⁰			
Max average flux	3.125 · 10 ¹⁰ particles/s						
Spot size [mm]	0.5-25 (y) × 0.6-55 (x)						
Divergence [mrad]	1-1.5						

PADME positron beam

Beam characteristics (referring to a 550 MeV beam on a 100 µm C target):

- Energy spread $\approx 1\%$
- Angular divergence < 1 mrad
- Beam RMS < 1 mm
- Position RMS = 0.25 mm
- Repetition rate = 49 Hz
- Particles per bunch \approx 5000 (limited by pile-up)
- Pulse duration = 40 ns

Beam spot example @ 450 MeV

Increasing the pulse duration it is possible to collect more statistics maintaining the same pile-up level

→ We performed some tests reaching a bunch length up to 280 ns. In principle up to 5 µs length is possible, but requires a (never tried or non-reversible) different linac configuration.

Backgrounds

Largest backgrounds:

- e⁺ e⁻ → γ γ (γ)
- $e^+ N \rightarrow e^+ N \gamma$
- pile-up

• 1 cluster in ECAL fiducial volume

- no hits in vetoes
- \bullet no γ in the SAC w/ $E_{\gamma} > 50~MeV$
- 20-150 MeV < E_{γ} < 120-350 MeV (depending on $m_{\text{A}'})$

Backgrounds geometry

Annihilation (+ISR): $e^+ e^- \rightarrow \gamma \gamma (\gamma)$

Bremsstrahlung: $e^+ N \rightarrow e^+ N \gamma$

Sensitivity

Conclusions

- Dark Photon (DP) is predicted in a class of relatively young and general new physics models which are quickly gaining interest in the DM community
- A DP that decays into DM can (partially) explain the $(g-2)_{\mu}$ discrepancy
- PADME is an experiment that will search for an "invisible" (DM) decaying DP at the Laboratori Nazionali di Frascati
- The collaboration aims to collect $10^{13} e^+$ on target by the end of 2018 testing, in a model-independent way, a DP w/ $\varepsilon \ge 10^{-3}$ and mass up to 23.7 MeV (E_{beam} = 550 MeV)
- PADME results will apply also to other hypothetical particles like Axion Like Particles and Dark Higgs

References

- Dark Photon
 - P. Galison and A. Manohar, Phys. Lett. B 136, 279 (1984)
 - B. Holdom, Phys. Lett. B 166, 196 (1986)
- Dark Photon and $(g-2)_{\mu}$ anomaly
 - M. Pospelov, Phys. Rev. D 80, 095002 (2009)
 - J. P. Lees et al., arXiv:1702.03327 (2017)
- Dark Photon research status and perspectives
 - M. Raggi and V. Kozhuharov, Riv. Nuovo Cim. 38, 449 (2015)
 - J. Alexander et al., arXiv:1608.08632 (2017)
- LNF Beam Test Facility
 - G. Mazzitelli et al., Nucl. Instrum. Meth. A 515, 524 (2003)
- PADME
 - M. Raggi and V. Kozhuharov, AdHEP 2014, 959802 (2014)
 - M. Raggi, V. Kozhuharov and P. Valente, EPJ Web Conf. 96, 01025 (2015)

Dark Photon search with PADME at LNF - Gabriele Piperno - PANIC 2017

Dark Photon searches

Publishing Approved Proposal

PADME visible

Preliminary calculations w/ 10^{18} EOT give a sensitivity on $\epsilon^2 \sim 10^{-7}$ in the low mass region, that worsens as $m_{A'}$ increases

Dark Higgs at PADME

 $e^+ e^- \rightarrow A' h' \\ \rightarrow A' A'$

Interesting decay for PADME (depending on $m_{h'}$ and $m_{A'}$):

- if $m_{A'} < m_{h'}/2$ dominant A' h' \rightarrow A' A' A' \rightarrow 6 leptons (0 charge, $E_{tot} < E_{beam}$)
- if $m_{A'} > m_{h'}/2$ (or h' long lived) dominant A' h' \rightarrow A' inv. \rightarrow 2 leptons (0 charge)
- strong signature (no new detector component needed)
- tracking spectrometer needed

Axion Like Particles at PADME

An invisible decaying or long lived ALP in PADME has the same signature of a DP:

•1γ

• missing energy in the final state

In the visibile decay $a \rightarrow \gamma \gamma$ all the production mechanisms can be explored up to m_{ALP} ~100 MeV.

Observables:

- e⁺ γ γ
- •γγγ

