

Recent highlights of heavy-flavor baryon physics from Belle

• Studies of excited Ξ_c

- ♦ Mass and widths measurements of 5 excited Ξ_c states decaying into $\Xi_c \pi$
- Higher excited Ξ_c decaying into ΛD
- Studies of Λ_c^+ decay modes
 - $\Lambda_c^+ \rightarrow p\phi\pi^0$ and $\Lambda_c^+ \rightarrow pK^-\pi^+\pi^0$
 - $\Lambda_c^+ \rightarrow pK^+\pi^-$

Production cross sections of hyperons and charmed baryons

M. Niiyama (Kyoto U.) for the Belle Collaboration

experiment

system

Detector

◆Asymmetric energy e⁺e⁻ collider

- General purpose detector
 - Detect charged particles and photons
 - Good momentum/vertex resolution K/π separation up to 3.5

Data a energies Integr

Ge

 $\Upsilon(5S)$: 121 fb^{-1} On resonance: $\Upsilon(4S): 711 \, f b^{-1}$ $\Upsilon(3S): 3 f b^{-1}$ $\Upsilon(2S): 25 f b^{-1}$ $\Upsilon(1S): 6 f b^{-1}$ Off resonance/ scan: $\sim 100 \, fb^{-1}$

Mass and widths measurements of 5 excited Ξ_{c} states decaying into $\Xi_{c}\pi$

PRD 94, 052011(2016)

excited Ξ_{c} states into Ξ_{c}^{0} and Ξ_{c}^{+} Bar

- ♦ Five isodoublets of excited Ξ_c [$\Xi_c', \Xi_c(2645), \Xi_c(2790), \Xi_c(2815), \Xi_c(2980)$] are studied using 980/fb of Belle data.
- Previous measurements (CLEO, BaBar, Belle) were with low statistics.
 For widths, only upper limits were given for many states.
- Decays used in this analysis

```
\begin{aligned} \Xi_c(2980) &\to \Xi_c(2645)\pi \to \Xi_c\pi\pi \\ \Xi_c(2980) &\to \Xi_c'\pi \\ \Xi_c(2815) &\to \Xi_c(2645)\pi \to \Xi_c\pi\pi \\ \Xi_c(2815) &\to \Xi_c'\pi \\ \Xi_c(2790) &\to \Xi_c'\pi \\ \Xi_c' \to \Xi_c\gamma \end{aligned}
```

 $= \Xi_c^+ and = \Xi_c^0 are reconstructed from 10 and 7 decay modes$

Invariant mass spectra of excited Ξ_{c} states

 $\begin{array}{ll} m=2820.20\pm0.08(\text{stat.})\ \text{MeV} & m=2816.73\pm0.08(\text{stat.})\ \text{MeV} \\ \Gamma=2.54\pm0.18(\text{stat.})\ \text{MeV} & \Gamma=2.43\pm0.20(\text{stat.})\ \text{MeV} \end{array}$

Masses and widths are determined from fit. Fit functions are

Signal: Breit-Wigner convoluted with a double-Gaussian resolution functions

Background : polynomial functions

Invariant mass spectra of excited Ξ_c states

Reconstruction of Ξ_{c}' states

 $m = 2579.2 \pm 0.1$ (stat.) MeV

m=2578.4±0.1(stat.) MeV

Masses are determined from fit.

Fit functions are

Signal: two "crystal ball" functions with different resolution parameters that are fixed using MC Background : polynomial functions

Invariant mass spectra of excited Ξ_{c} states

Signal: Breit-Wigner convoluted with a double-Gaussian resolution functions Background : polynomial functions

Results											
$\mathbf{\Sigma}_{c}$ Study of Excited Ξ_{c} States Decaying											
$\underbrace{\text{Mass}}_{50 \pm 40} \underbrace{\text{Mass}}_{2645.58 \pm 0.06 \pm 0.07^{+0.28}_{-0.40}} \text{ into } \Xi^0_c \text{ and } \Xi^+_c \text{ Baryons}_c \text{ is into } \Xi^0_c$											
PDG Particle	Vield	2645.9 ± 0.5 Mass	$2.6 \pm 0.2 \pm 0.4$ 25 \pm 0.18 \pm 0.12 Width	√ ♦ Widths: 5 first							
$\Xi_c(2645)^+$ PDG	1260 ± 40	$2645.58 \pm 0.06 \pm 0.07^{+0.28}_{-0.40}$ 2645.9 ± 0.5	$2.06 \pm 0.13 \pm 0.13$ $2.6 \pm 0.2 \pm 0.4$	measurements $(\Xi_{c}(2645)^{0}, \Xi_{c}(2645)^{0}, \Xi_{c}(2815)^{0}, \Xi_{c}(2700)^{+}$							
$\Xi_c(2645)^0$ PDG	975 ± 36	$2646.43 \pm 0.07 \pm 0.07^{+0.28}_{-0.40}$ 2645.9 ± 0.5	$2.35 \pm 0.18 \pm 0.13$ < 5.5	$\Xi_{\rm c}(2813)^{\circ}, \Xi_{\rm c}(2813)^{\circ}, \Xi_{\rm c}(2790)^{\circ}, \Xi_{\rm c}(279$							
$\Xi_c(2815)^+$ PDG	941 ± 35	$2816.73 \pm 0.08 \pm 0.06^{+0.28}_{-0.40}$ 2816.6 ± 0.9	$\begin{array}{c} 2.43 \pm 0.20 \pm 0.17 \\ < 3.5 \end{array}$								
$\Xi_c(2815)^0$ PDG	1258 ± 40	$\begin{array}{c} 2820.20 \pm 0.08 \pm 0.07 \substack{+0.28 \\ -0.40} \\ 2819.6 \pm 1.2 \end{array}$	$\begin{array}{c} 2.54 \pm 0.18 \pm 0.17 \\ < 6.5 \end{array}$	Measurement of the isospin splitting consistent with non-							
$\Xi_c(2980)^+$ PDG	916 ± 55	$2966.0 \pm 0.8 \pm 0.2^{+0.3}_{-0.4}$ 2970.7 ± 2.2	$28.1 \pm 2.4^{+1.0}_{-5.0} \\ 17.9 \pm 3.5$	relativistic quark model. [B.							
$\Xi_c(2980)^0$ PDG	1443 ± 75	$2970.8 \pm 0.7 \pm 0.2^{+0.3}_{-0.4}$ $2968.0 \pm 2.6 \pm 0.5$	$\begin{array}{c} 30.3 \pm 2.3^{+1.0}_{-1.8} \\ 20 \pm 7 \end{array}$	2685, (2003)]							
$\Xi_c^{\prime+}$ PDG	7055 ± 211	$2578.4 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$ 2575.6 ± 3.0									
$\Xi_c^{\prime 0}$ PDG	11560 ± 276	$2579.2 \pm 0.1 \pm 0.4^{+0.3}_{-0.4} \\2577.9 \pm 2.9$		$\begin{array}{c} e & M(\Xi_c^+) - M(\Xi_c^0) & (\text{MeV}/c^2) \\ \hline 45) & -0.85 \pm 0.09 \pm 0.08 \pm 0.48 \\ 15) & 0.45 \pm 0.42 \pm 0.42 \pm 0.42 \\ \end{array}$							
$\Xi_c(2790)^+$ PDG	2231 ± 103	$2791.6 \pm 0.2 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$ 2789.8 ± 3.2	$8.9 \pm 0.6 \pm 0.8$ < 15	$ \begin{array}{c} -3.47 \pm 0.12 \pm 0.05 \pm 0.48 \\ -4.8 \pm 0.1 \pm 0.2 \pm 0.5 \\ -0.8 \pm 0.1 \pm 0.1 \pm 0.5 \end{array} $							
$\Xi_c(2790)^0$ PDG	1241 ± 72	$2794.9 \pm 0.3 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$ 2791.9 ± 3.3	$\begin{array}{c} 10.0 \pm 0.7 \pm 0.8 \\ < 12 \end{array}$	$90) -3.3 \pm 0.4 \pm 0.1 \pm 0.5$							

Excited Ξ_{c} states in ΛD PRD94, 032002 (2016)

Excited Ξ_c states in ΛD

• Relative branching fractions (BF) of $\Sigma_c K$ and ΛD decays reveal the internal structure of Ξ_c states.

- Chiral quark model: Ξ_c(3055), Ξ_c(3080) as D-wave and S-wave excitation in N=2 (radial) states. Small coupling to AD. PRD86,034024(2012)
- Relative BFs ($\Lambda D / \Sigma_c K$) for $\Xi_c(3055)$, $\Xi_c(3080)$ are studied using 980/fb of Belle data.
- Relative BF ($\Sigma_c^* K / \Sigma_c K$) for $\Xi_c(3080)$ is also studied.
- D^{+/0} mesons are reconstructed in
 - $\diamond D^+ \rightarrow K^- \pi^+ \pi^+$
 - $\diamond D^0 \to K^-\pi^+, D^0 \to K^-\pi^+\pi^-, D^0 \to K^-\pi^+\pi^0$

Observation of excited Ξ_c decay to $\Lambda D^{980 fb^{-1}}_{PRD 94, 032002}$ (2016)

• Discovery of $\Xi_c(3055)^+ \rightarrow \Lambda D^+$ with 11.7 σ and evidence for $\Xi_c(3080)^+ \rightarrow \Lambda D^+$ with 4.8 σ

► Discovery of isosin partner $\Xi_c(3055)^0 \rightarrow \Lambda D^0$ with 8.6 σ

Combined analysis of ΛD and $\Sigma_c K$ modes Simultaneous fit b/w m(ΛD), m($\Sigma_c^{++}K^{-}$), m($\Sigma_c^{*++}K^{-}$), m($\Lambda_c^{+}K^{-}\pi^{+}$) with common width.

Observation of excited Ξ_c decay to ΛD

PRD 94, 032002 (2016)

980fb⁻¹

First discovery of $\Xi_{\rm c}(3055)^0$, we measure its mass and width

- > $M(\Xi_c(3055)^0) = 3059.0 \pm 0.5 \pm 0.6 \text{ MeV/c}^2$
- > $\Gamma(\Xi_{c}(3055)^{0}) = 6.4 \pm 2.1 \pm 1.1 \text{ MeV}$

State	$BR(\Lambda D^+)/BR(\Sigma_c^{++}K^-)$	$BR(\Sigma_{c}^{*++}K^{-})/BR(\Sigma_{c}^{++}K^{-})$
Ξ _c (3055)⁺	$5.09 \pm 1.01 \pm 0.76$	
Ξ _c (3080) ⁺	$1.29 \pm 0.30 \pm 0.15$	$1.07 \pm 0.27 \pm 0.01$

The chiral quark model has been used to identify $\Xi_c(3055)$ as *D*-wave excitation in N=2 shell, and predict **PRD86,034024 (2012)**

	$\Sigma_c \bar{K}$	$\Xi_c^*(2645)\pi$	$\Xi_c^\prime \pi$	$\Sigma_c^* \bar{K}$	$D\Lambda$	total
$ \Xi_c^2 D_{\lambda\lambda}(3/2^+)\rangle$	2.3	0.5	1.0	0.1	0.1	4.0
$ \Xi_c^2 D_{\rho\rho}^{(3/2^+)}\rangle$	5.6	0.8	3.3	0.3	-	10.0

Further identifies $\Xi_c(3080)$ as an *S*-wave excitation mode in N=2 shell and predicts that its decay into ΔD is forbidden.

- Belle results contradicts some theory results.
- \circ Crucial input to understand the nature of excited Ξ_c baryons.

Study of $\Lambda_c^+ \rightarrow p\phi\pi^0$ and $\Lambda_c^+ \rightarrow pK^-\pi^+\pi^0$ decay with a search for pentaquark state

arXiv:1707.00089 [hep-ex] accepted by PRD

Search for pentaquark state in $\Lambda_c^+ \rightarrow p\phi\pi^0$ decay

◆LHCb's hidden-charm pentaquark (P_c^+) discovery in J/ψp of $\Lambda_b^0 \rightarrow J/\psi pK^-$

♦ Strange analog state (P_s^+) may appear in $\phi p \text{ of } \Lambda_c^+ \rightarrow \phi p \pi^0$ assuming production mechanism is flavor independent

- V. Kopeliovich, arxiv:1510.05958 [hep-ph], R. F.
 Lebed, PRD92, 114030
- Cabibbo-suppressed decay
- ◆ LEPS & CLAS observed a bump at \sqrt{s} ~2.2 GeV in ϕ photoproduction
- ♦ PRL95, 182001, PRCE
 ♦ This analysis used 9: at and near Y(4S) and Y^Λ^c
 ♦ In addition, the precibranching fraction of Cabibbo favored decay
 Λ⁺_c → pπ⁺K⁻π⁰ is presented

Analysis of $\Lambda_c^{+} \rightarrow p\phi\pi^0$ decay

Exclude events of M($p\pi^0$) within 10 MeV of mass of Σ^+

Two dimensional fit is performed to $pK^+K^-\pi^0$ and K^+K^- invariant masses in order to extract the Λ_c^+ signal yield

• 148.4±61.8 for $\Lambda_c^+ \rightarrow p\phi\pi^0$ • 75.9±84.8 for $\Lambda_c^+ \rightarrow pK^+K^-\pi^0$

$$\mathcal{B}(\Lambda_c^+ \to \phi p \pi^0) < 15.3 \times 10^{-5}, \mathcal{B}(\Lambda_c^+ \to K^+ K^- p \pi^0)_{\rm NR} < 6.3 \times 10^{-5},$$

 $\Lambda_{c}^{+} \rightarrow pK^{+}\pi^{-}$, doubly Cabibbo-suppressed (DCS) decay of Λ_{c}

PRL117, 011801 (2016)

Cabibbo-suppressed decay of Λ_{c}

 Doubly Cabibbo-suppressed (DCS) decays seen in charm mesons, but not previously in baryons.

Naïve expectation: $\frac{\mathcal{B}(DCS)}{\mathcal{B}(CF)} =$

 $tan^4 \theta_c = 0.285\%$

Since W-exchange diagram is absent in DCS decay, $\frac{\mathcal{B}(DCS)}{\mathcal{B}(CF)}$ may be smaller than the naïve expectation.

This analysis uses 980/fb of data collected at and near $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S), \Upsilon(4S)$ and $\Upsilon(5S)$ resonances.

After subtracting the contribution $\Lambda^*(1520)$ and Δ isobar intermediates, which only contribute to CF decay, the revised ratio

$$\frac{\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (1.10 \pm 0.17) \tan^4 \theta_c$$

compatible with naïve expectation: no large W-exchange contribution in CF decay.

Production cross sections of hyperons and charmed baryons

arXiv:1706.06791 [hep-ex] submitted to PRD

Baryon production rates in e⁺e⁻ collision

Inclusive differential cross sections, hyperons

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (x_p). $x_p = p/\sqrt[3]{s/4 - M^2}$ (M, p : mass and CM momentum)

Inclusive differential cross sections, hyperons

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (x_p). $x_p = p/\sqrt[3]{s/4 - M^2}$ (M, p : mass and CM momentum)

Results for hyperons

Results of charmed baryons

Discussion

- Assuming that a c-quark picks up a diquark from vacuum,
 - Schwinger-like "tunnel effect" of diquark and anti-diquark

 $\sigma \propto \exp(-\pi \mu^2/\kappa)$ μ : diquark mass κ : gluonic string tension

B. Andersson et al., Phys. Scripta. 32, 574 (1985)

•
$$\sigma(\Sigma_c)/\sigma(\Lambda_c) = 0.27 \pm 0.07$$

• Λ_c : spin-0 diquark, Σ_c : spin-1 diquark,

mass difference of spin-1 and 0 diquarks

$$m(ud_1)^2 - m(ud_0)^2$$

= $(8.2 \pm 0.8) \times 10^4 \ (\text{MeV}/c^2)^2$
ref. $490^2 - 420^2 = 6.4 \times 10^4 \ (\text{MeV}/c^2)^2$

B. Andersson et al., Phys. Rept. 97, 31 (1983)

• Slightly higher than reference but consistent with the spin-1/0 diquark mass difference!

Summary

• Mass and widths of 5 excited Ξ_c states decaying into $\Xi_c \pi$

- Masses:~1order improvement of precision
- Widths: 5 first measurements $(\Xi_c(2645)^0, \Xi_c(2815)^+, \Xi_c(2815)^0, \Xi_c(2790)^+, \Xi_c(2790)^0)$

• Higher excited Ξ_c decaying into ΛD

- Relative BFs (AD / $\Sigma_c K$) for $\Xi_c(3055), \Xi_c(3080)$
- Relative BF ($\Sigma_c^* K / \Sigma_c K$) for $\Xi_c(3080)$
- Mass and width of $\Xi_{c}(3055)^{0}$
- Studies of Λ_c^+ decay modes
 - Upper limit on $\Lambda_c^+ \rightarrow p\phi\pi^0$ and P_s
 - Precise measurement of B.F. of $\Lambda_c^+ \rightarrow pK^-\pi^+\pi^0$
 - ♦ First observation of DCS decay of $\Lambda_c^+ \rightarrow pK^+\pi^-$

Production cross sections of hyperons and charmed baryons

• Suppression for Σ_c baryons, indicating diquark structure in charmed baryons