Inclusive searches for squarks and gluinos with the ATLAS detector

Boosting the sensitivity with the full 2015/2016 13 TeV dataset

Moritz Backes¹ (University of Oxford, UK) on behalf of the **ATLAS Collaboration**

21st Particles & Nuclei International Conference, Beijing, China

3 September 2017

¹Moritz.Backes@cern.ch

Introduction

- If gluinos and squarks (1st and 2nd generation) exist at LHC-accessible energies and R-parity is conserved:
 - Pair-production with large cross-sections compared to 3rd generation squarks and electro-weak production
 - Direct or cascade decays to the stable lightest SUSY particle (LSP).
- Experimental signature of inclusive searches (depending on mass spectra):
 - Significant missing transverse momentum (E_T^{miss})
 - Multiple high- p_T jets
 - Other objects, e.g. leptons
- Extensive LHC search program did not lead to any significant signs of SUSY
- This presentation covers 5 searches using the full 2015 + 2016 ATLAS dataset @ 13 TeV (~36 fb⁻¹) in the following final states:
 - 0-*l* + 2-6 jets + E_{T,miss}: <u>ATLAS-CONF-2017-022</u>
 - 0-l + 7-11 jets + E_{T,miss}: <u>arXiv:1708.02794</u>
 - 0/1-ℓ + 3-4 b-jets + E_{T,miss}: <u>ATLAS-CONF-2017-021</u>
 - 2-l (same-sign) or 3-l + jets + E_{T,miss}: <u>arXiv:1706.03731</u>
 - 1-l + jets + E_{T,miss}: <u>arXiv:1708.08232</u>

03/09/17

Moritz Backes

Blueprint of Inclusive SUSY searches

- Build signal regions (SRs) based on requirements on signal / background discriminating variables to (1) target specific SUSY event topologies. Optimised for discovery & exclusion.
- (2)Determine Standard Model background in the SRs:

Inclusive 0-*l* Search: Overview

Inclusive O-*l* Search: Backgrounds

• Dominant backgrounds estimated in 4 CRs for each SR → extrapolation to VRs/SRs with transfer factors (TFs)

03/09/17

Moritz Backes

Inclusive O-*l* Search: Results

- Background estimates validated in large amount of validations regions for the major background processes
- No significant deviations from the Standard Model expectation in both streams

03/09/17

Inclusive O-*l* Search: Interpretations

03/09/17

Moritz Backes

Inclusive O-*l* Search: Interpretations

03/09/17

Moritz Backes

$0-\ell$ + multi-jets: Analysis Strategy

- Target final state: 0-lepton + ≥ 7-11 + low / moderate E_{T.miss}
- Key feature: Use of $E_{T.miss}$ significance (instead of $E_{T.miss}$) as discriminating variable:

$$E_{
m T}^{
m miss}/\sqrt{H_{
m T}}$$
 , where: $H_{
m T}=\sum_{j}p_{{
m T},j}^{
m jet}$

 \rightarrow Analysis also sensitive to scenarios with lower E_{T miss} (including RPV models)

Benchmark scenarios for inclusive gluino & squark production (RPC):

0-*l* + multi-jets: Backgrounds & Results

0-*l* + multi-jets: Interpretation

Multi b-jet Search: Overview

- Defining feature: ≥ 3 b-jets + 0/1 lepton + E_{T,miss} final state
- Main benchmarks are gluino-mediated stop/sbottom production
- ① 10 Inclusive signal regions optimised for discovery:
 - Selection: ≥ 3-8 jets using N_{b-tag}, m_{eff}, m_T, E_{T,miss}, Σm_{large-R jets} to target compressed, intermediate, & large mass splittings
- ② Binned orthogonal signal regions optimised for exclusion:
 - Selection: Ranging from low to high (m_{eff} & N_{jet}) to cover broad range of mass spectra
 - Combined fit over all bins to enhance exclusion power

Multi b-jet Search: Backgrounds & Results

- Major background tt+jets estimated with 1-lepton control regions, other backgrounds from simulation
- Generally good agreement between data and prediction in discovery and exclusion signal regions
- Small deviation in 0-lepton highmass signal region ~ 2σ

Multi b-jet Search: Interpretation

- extended by ~100 GeV w.r.t. 14.8 fb⁻¹ analysis – observed **beyond 1.9 TeV**
- → Sensitivity extended in g→tt+x⁰ analysis extended by ~200 GeV w.r.t. 14.8 fb⁻¹ analysis – observed limit beyond 1.95 TeV

03/09/17

2-l (same-sign) / 3-l Search

- Target final state: 2 same-sign leptons (e[±]e[±], e[±]μ[±], μ[±]μ[±]) or three leptons (e/μ without flavour / charge selection)
- Key feature: SM backgrounds in same-sign final states small while rich SUSY / BSM phenomenology
 - \rightarrow Can apply much looser kinematic requirements in this channel to discriminate signal from background
 - \rightarrow Sensitive to large number of models (including e.g. compressed / RPV models)
- Benchmark scenarios for inclusive gluino & squark production (RPC):

2-l (SS) / 3-l: Backgrounds & Results

st 1600 1400

1200

1000

800

600

400

200

0.8

- Dominant background: Rare processes with prompt leptons (mainly tt+V & diboson): Simulation + validation regions
- Fake and non-prompt leptons (FNP): 2 data-driven methods (loose-tight matrix-method & normalisation of FNP contributions in data control regions)
- Electron charge mis-measurement (dominated by hard bremsstrahlung conversion): Charge flip probability estimated from $Z \rightarrow$ ee events
- Results: No significant deviations from the Standard Model:

- Data

////// Total SM

Diboson

l tłΨ. tłZ/γ* Rare. ttH. 4t

Charge-flip FNP: matrix method

Fake/non-prompt

ATLAS

√s=13 TeV. 36.1 fb⁻¹

 $\geq I^{\pm}I^{\pm}, \geq 2j, E_{\pm}^{\text{miss}} > 50 \text{ GeV}$

2-l (SS) / 3-l: Interpretation

$1-\ell$ + jets + E_T^{miss} Search: Signal Regions

- Target final state: 1 lepton (soft/hard) + jets + E_T^{miss}
- Two analysis streams

(1) "2-6 jet stream": Targeting simplified models with gluino/squark production and 1-step decay via chargino to LSP

Two model planes to probe optimal slices of parameter space with $x = \frac{1}{2}$ or variable x

SR	2J	4J high-x	4J low-x	6J
N _ℓ	= 1	= 1	= 1	= 1
p_{T}^{ℓ} [GeV]	> 7(6) for $e(\mu)$ and < min(5 \cdot N _{jet} , 35)	> 35	> 35	> 35
N _{jet}	≥ 2	4–5	4–5	≥ 6
$E_{\rm T}^{\rm miss}$ [GeV]	> 430	> 300	> 250	> 350
$m_{\rm T}$ [GeV]	> 100	> 450	150-450	> 175
Aplanarity	-	> 0.01	> 0.05	> 0.06
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.25	> 0.25	-	-
$N_{b-\text{jet}}$ (excl)	$= 0$ for <i>b</i> -veto, ≥ 1 for <i>b</i> -tag			
$m_{\rm eff}$ [GeV] (excl)	3 bins ∈ [700,1900]	$2 \text{ bins} \in [1000, 2000]$	2 bins ∈ [1300,2000]	3 bins ∈ [700,2300]
	+ [> 1900]	+ [> 2000]	+ [> 2000]	+ [> 2300]
m _{eff} [GeV] (disc)	> 1100	> 1500	> 1650(1300)	> 2300(1233)
			for gluino (squark)	for gluino (squark)

- **4 exclusive signal regions** targeting different mass splittings
- Includes **soft-lepton** 2J region to target compressed scenarios
- For discovery: Tight cuts on m_{eff}

•

For exclusion: Further binning in m_{eff} and N_{b-jet} to (28 regions in total) to maximise sensitivity to a wide range of models

03/09/17

Moritz Backes

$1-\ell$ + jets + E_T^{miss} Search: Signal Regions

- Target final state: 1 lepton (soft/hard) + jets + E_T^{miss}
- Two analysis streams
 - (2) "9 jet stream": Targeting models with higher jet multiplicities:

p	$\tilde{\chi}_2^0$ t t Z/ℓ $\tilde{\chi}_1^0$	² "0-lepton + multi-jets pMSSM slice"
p g	$\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ W	example decay chain

SR	9J
N_ℓ	= 1
$p_{\rm T}^{\ell}$ [GeV]	> 35
N _{jet}	≥ 9
$E_{\rm T}^{\rm miss}$ [GeV]	> 200
$m_{\rm T}$ [GeV]	> 175
Aplanarity	> 0.07
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} [\mathrm{GeV}^{1/2}]$	≥ 8
$m_{\rm eff}$ [GeV] (excl)	[1000, 1500], [>1500]
$m_{\rm eff}$ [GeV] (disc)	> 1500

- Dedicated 9-jet signal region
- For discovery: Tight cut on m_{eff}
- For exclusion: Binning in m_{eff} to maximise sensitivity

03/09/17

Moritz Backes

1- ℓ + jets + E_T^{miss} Search: Backgrounds

2-6 jet stream:

- Dominant top & W+jets backgrounds:
 - Dedicated control regions in each m_{eff}
 bin + extrapolation to validation and signal regions
- Other Backgrounds: Z+jets, tt+V, di-boson
 - From simulation

9 jet stream:

- Dominant top & W+jets background:
 - "ABCD" method based on invariance of transverse mass with jet multiplicity (~valid for tight cuts on m_{eff})
 - Simulation-based closure parameter to correct for residual correlations
 - Validation using ABC'D' and A'BCD" setups
- Other Backgrounds: Z+jets, tt+V, di-boson
 - From simulation

$1-\ell$ + jets + E_T^{miss} Search: Results

$1-\ell$ + jets + E_T^{miss} Search: Interpretation

Full statistical combination of 2-6 jet stream exclusion regions

03/09/17

Moritz Backes

Summary & Outlook

- Presented 5 new inclusive ATLAS searches for gluinos and squarks using the full 2015 + 2016 dataset of 36.1 fb⁻¹ at 13 TeV:
 - 0-*l* + 2-6 jets + E_{T,miss}: <u>ATLAS-CONF-2017-022</u>
 - 0-*l* + 7-11 jets + E_{T,miss}: <u>arXiv:1708.02794</u>
 - 1-*l* + jets + E_{T,miss}: <u>arXiv:1708.08232</u>
 - 2-*l* (same-sign) or 3-*l* + jets + E_{T,miss}: <u>arXiv:1706.03731</u>
 - 0/1-*l* + 3-4 b-jets + E_{T.miss}: <u>ATLAS-CONF-2017-021</u>
- No significant deviations from SM
- Significant boost in sensitivity excluding gluino masses in some scenarios beyond 2 TeV!
- See also contributions by Federico Meloni and Yang Liu for interpretations od these searches in R-parity violating and 3rd generation squark production models