

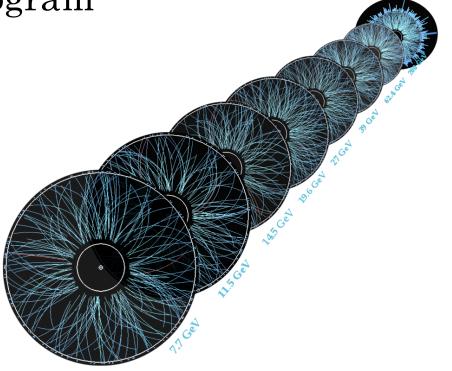

# The STAR beam energy scan phase II physics and upgrades

Chi Yang 杨驰
for the STAR collaboration

Shandong University 山东大学

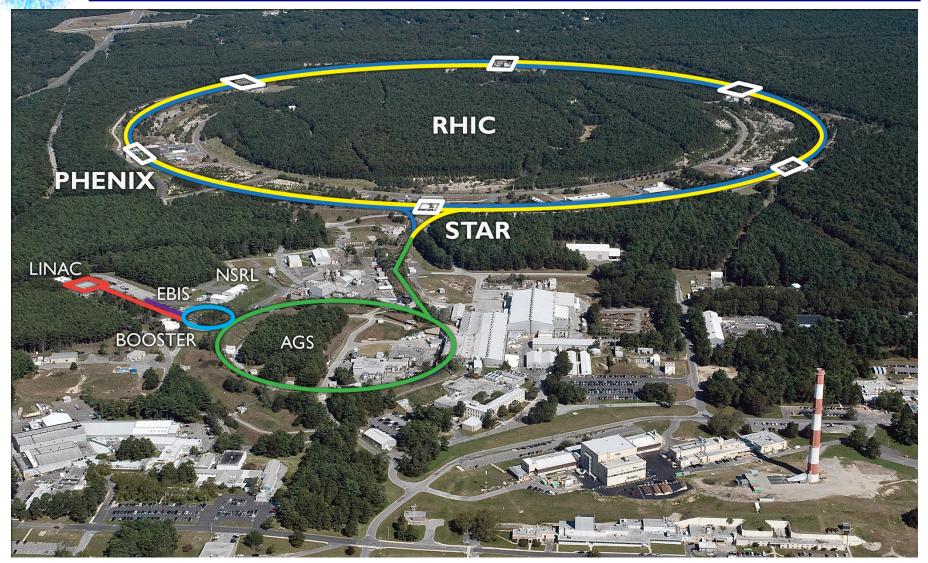







## Outline

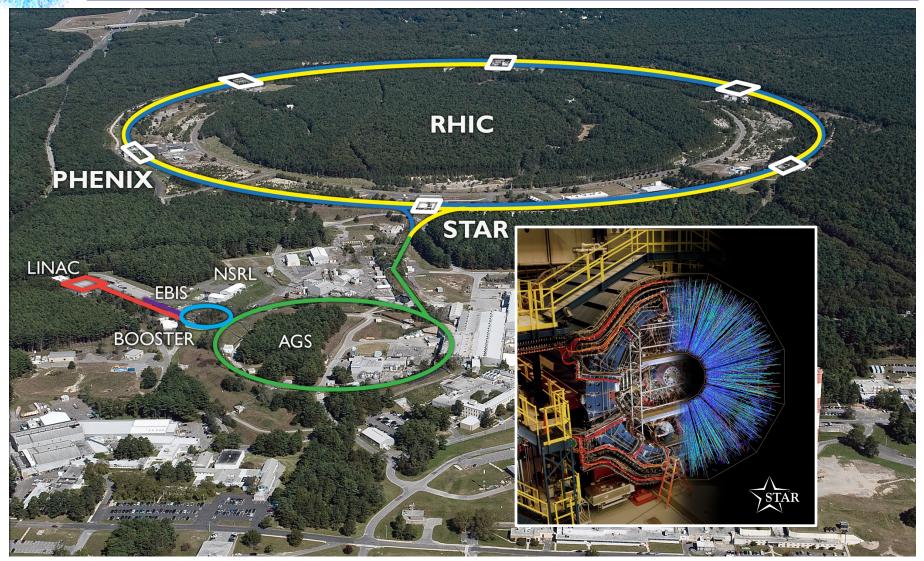
- STAR@RHIC
- STAR detector upgrade
- Motivation of the upgrades


• Beam Energy Scan program

Summary



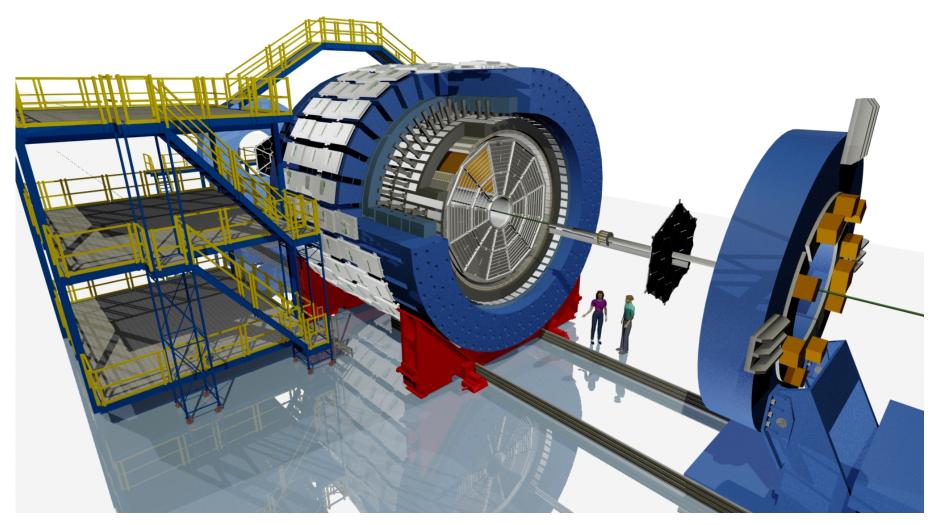



## Relativistic Heavy Ion Collider



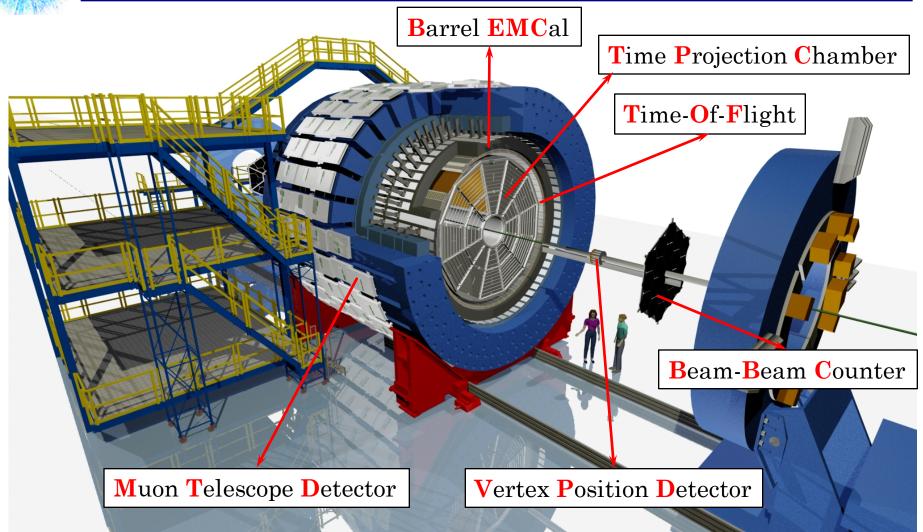
Located in Brookhaven National Laboratory, Upton, New York, USA




## Solenoidal Tracker At RHIC



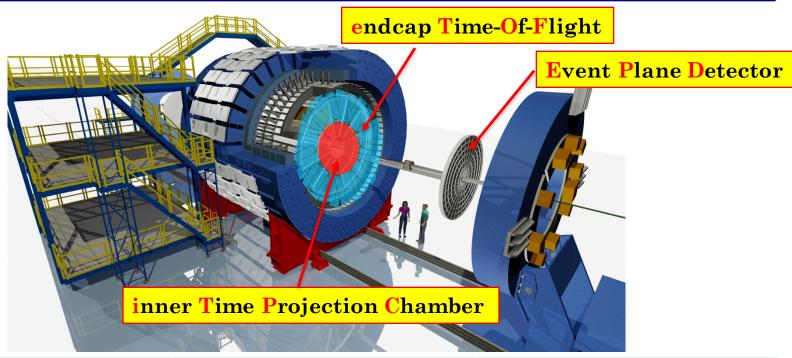
Located in Brookhaven National Laboratory, Upton, New York, USA




## Current STAR detector






### Current STAR detector

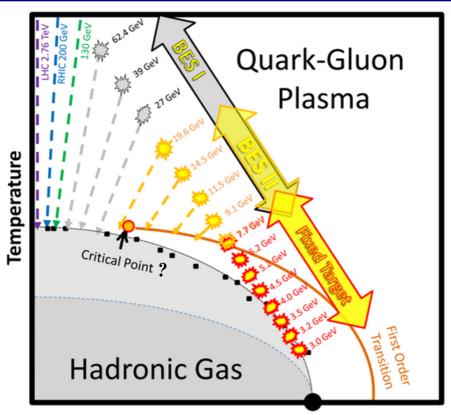


Large acceptance, good particle identification Plenty of interesting physics results over years



## Ongoing detector upgrade




| iTPC upgrade                                             | EPD upgrade                                                        | eTOF upgrade                                          |
|----------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|
| Continuous pad rows<br>Replace all inner TPC sectors     | Replace Beam Beam Counter                                          | Add CBM TOF modules and electronics (FAIR Phase 0)    |
| $ \eta  < 1.5 \text{ (was 1.0)}$                         | 2.1<  n   <5.1                                                     | -1.6<η<-1.1                                           |
| $p_T > 60 \text{ MeV/c} \text{ (was } 150 \text{MeV/c)}$ | Better trigger & b/g reduction                                     | Extend forward PID capability                         |
| Better dE/dx resolution<br>Better momentum resolution    | Greatly improved Event Plane info (esp. 1 <sup>st</sup> -order EP) | Allows higher energy range of Fixed<br>Target program |
| Fully operational in 2019                                | Fully operational in 2018                                          | Fully operational in 2019                             |



Why do we need to upgrade these subsystems?



#### Physics motivation for Beam Energy Scan program



Baryon Chemical Potential  $\mu_{B}$ 

#### Explore the QCD phase diagram

Signs of 1<sup>st</sup> order phase transition  $\Longrightarrow$  HBT, v<sub>1</sub> analyses

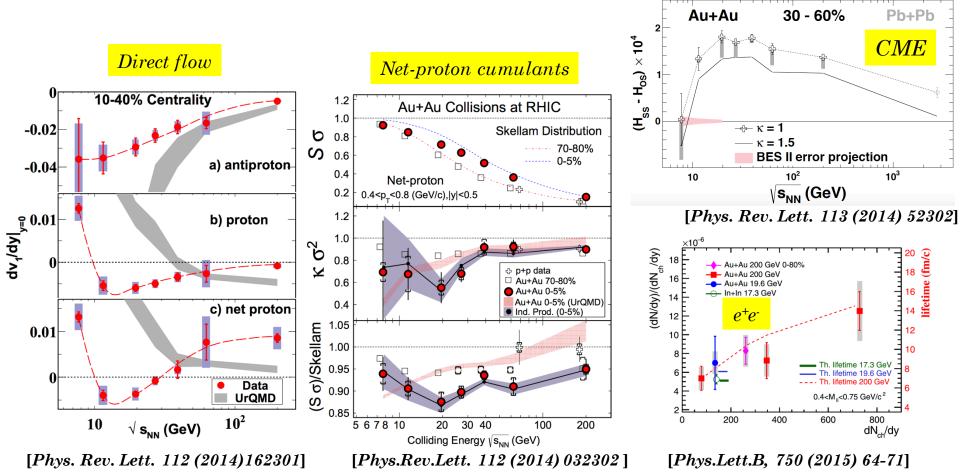
QCD critical point.

Chiral symmetry restoration

Signature on QGP turn-off.

Fluctuation analyses (net-proton kurtosis)

Dilepton analyses


 $R_{cp}$ , CME,  $\phi v_2$ 



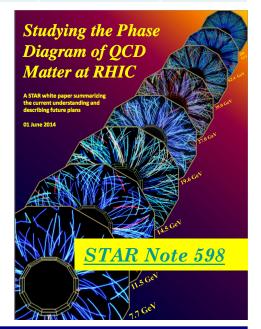
## RHIC Beam Energy Scan Phase I

- From 2010 to 2014
- 8 collision energies 200, 62, 39, 27, 19.6, 14.5, 11.5 and 7.7 GeV

Vary temperature T and baryon chemical potential μ<sub>B</sub>






## Beam Energy Scan Phase II (BES-II)

| <b>√</b> | In                               | 2019 | &                 | 2020 |
|----------|----------------------------------|------|-------------------|------|
| •        | $\mathbf{T}\mathbf{T}\mathbf{T}$ | 4010 | $\mathbf{\alpha}$ | 4040 |

| $\checkmark$ | 7.7, | 9.1, | <i>11.5</i> , | 14.5 | and | 19.6 | GeV |
|--------------|------|------|---------------|------|-----|------|-----|
|--------------|------|------|---------------|------|-----|------|-----|

- $\checkmark \mu_B$  from 205 to 420 MeV
- ✓ 10 -- 25 times more statistics
- ✓ Detector upgrades
- ✓ Low Energy Electron Cooling at RHIC

| Collision<br>Energies<br>(GeV) | Proposed<br>Event<br>Goals (M) | BES-I<br>Event<br>(M) |
|--------------------------------|--------------------------------|-----------------------|
| 7.7                            | 100                            | 4                     |
| 9.1                            | 160                            | N/A                   |
| 11.5                           | 230                            | 12                    |
| 14.5                           | 300                            | 20                    |
| 19.6                           | 400                            | 36                    |





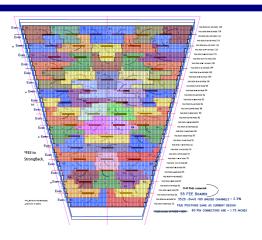
#### Physics impact for the detector upgrade in BES-II

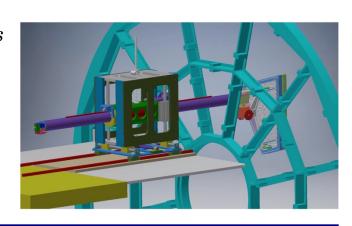
#### Low Energy Electron Cooling at RHIC:

- ✓ Electron Cooling can raise the luminosity by a factor of 3-10 in the range from 5-20 GeV (will be applied to 7.7-15 GeV data taking)
- ✓ Long Bunches increase luminosity by factor of 2-5

## The upgrades for BES-II will improve many of the STAR analyses

- ✓ Better statistics
- ✓ Better resolution
- ✓ Smaller systematic uncertainty
- ✓ Wider rapidity range
- ✓ Wider p<sub>T</sub> coverage

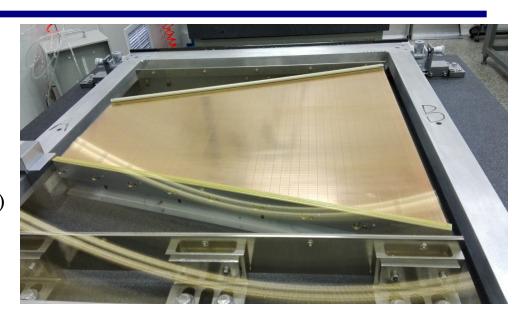

Only some selected physics topics will be discussed in this presentation




## The inner TPC upgrade

#### Replace all 24 inner sectors including:

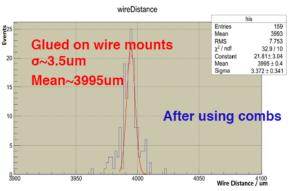
- ✓ Increase readout pad rows from 13 to 40
  - -- 20% -> ~100% readout pads coverage
- ✓ Renew all three wire frames
  - -- Replace ageing wires, MWPC building in Shandong University
- ✓ New electronics for inner sectors
  - -- Double # of readout channels per FEE, use ALICE SAMPA chip
- ✓ New designed insertion tools
  - -- Install and replace sectors, STAR operations
- ✓ New designed strongback
  - -- Ongoing in LBL

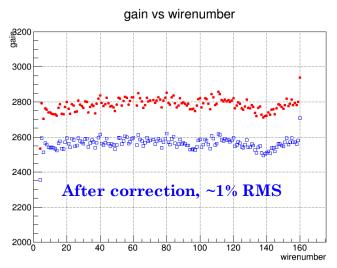






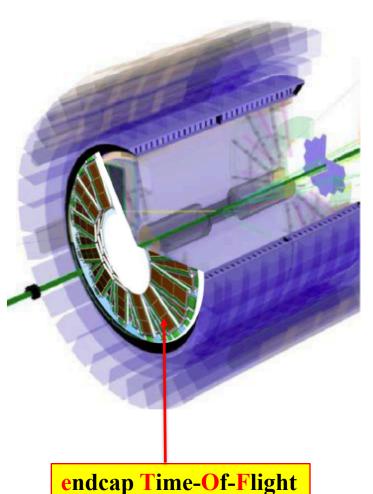

## MWPC production for iTPC


- ✓ MWPC mass production started
- ✓ Qualified wire tension, pitch, height
- ✓ Qualified gas gain uniformity (~1% RMS)




#### MWPC testing system




#### MWPC anode wire pitch

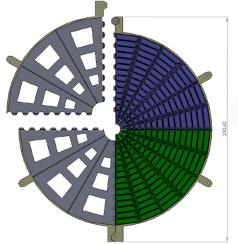






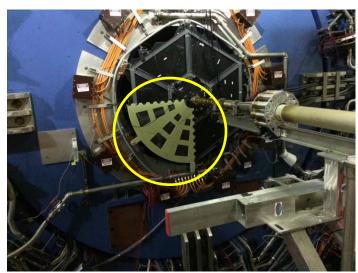
## The endcap Time-Of-Flight upgrade

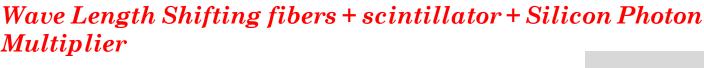


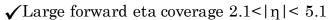

CBM and STAR collaborate and agree to install 10% of the full CBM TOF system at STAR (FAIR Phase 0)

- ✓ Provides STAR with an endcap TOF for BES-II
- ✓ Provides CBM a test of the CBM TOF system with large data samples (both in events and the scale of the system)
- ✓ Provides PID in forward direction
- ✓ Essential to STAR Fixed Target program at BES-II




## The Event Plane Detector upgrade


#### Centrality definition and event plane resolution are important for BES-II

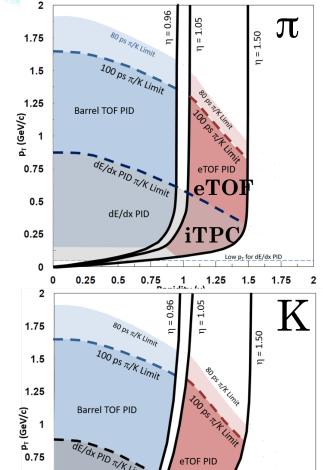



#### For examples:

- ✓ Net-proton higher moments
- $\checkmark$  dv<sub>1</sub>/dy for net protons
- $\checkmark$  v<sub>2</sub> of identified particles








- ✓Installed at z position +/- 375 cm
- ✓24 azimuthal segments better event plane resolution
- ✓16 radial segments centrality independent with TPC
- ✓ Good timing resolution (~ 1 ns)

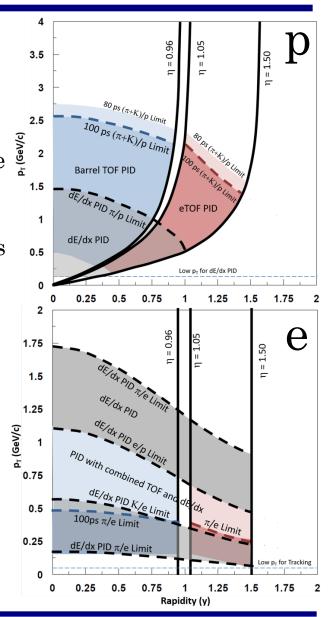




## Maps of Acceptance



#### Collider mode


Extends rapidity coverage  $\rightarrow$  allows a change in  $\mu_B$ 

Improves yields of protons

→ better kurtosis

Improves coverage for electrons

→ better di-electron studies



0.5

0.25

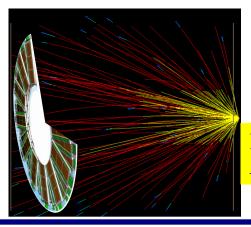
dE/dx PID

0.25

0.5

Rapidity (y)

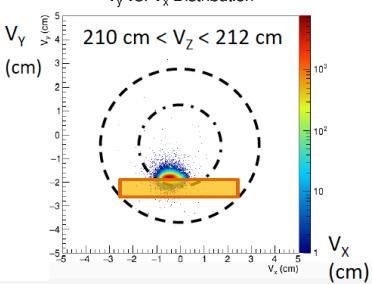
1.5


1.75



## FiXed Target program

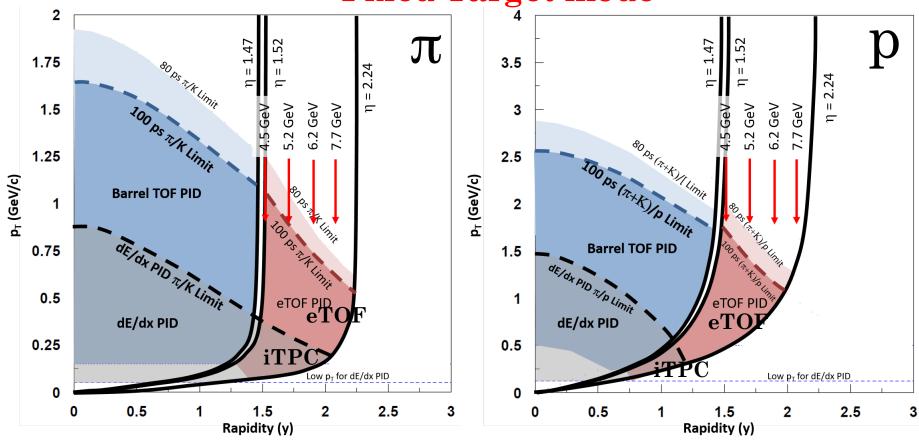
Fixed target program proposed during RHIC BES-II will extend the energy down to  $\sqrt{s_{NN}} = 3.0 \text{ GeV} (\mu_B = 721 \text{MeV})$ 


- ✓ The fixed target is outside the STAR TPC at 211 cm
- ✓ Only single beam is used
- $\checkmark \sqrt{s_{NN}} = 3.0 7.7 \text{ GeV}$
- ✓ ~100M events needed per energy (2 days, DAQ rate limited)



Reconstructed 3.9 GeV Au+Au event

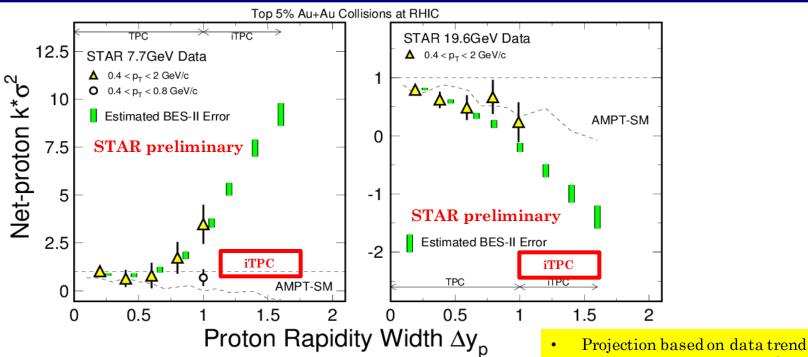



V<sub>v</sub> vs. V<sub>x</sub> Distribution





## Maps of Acceptance

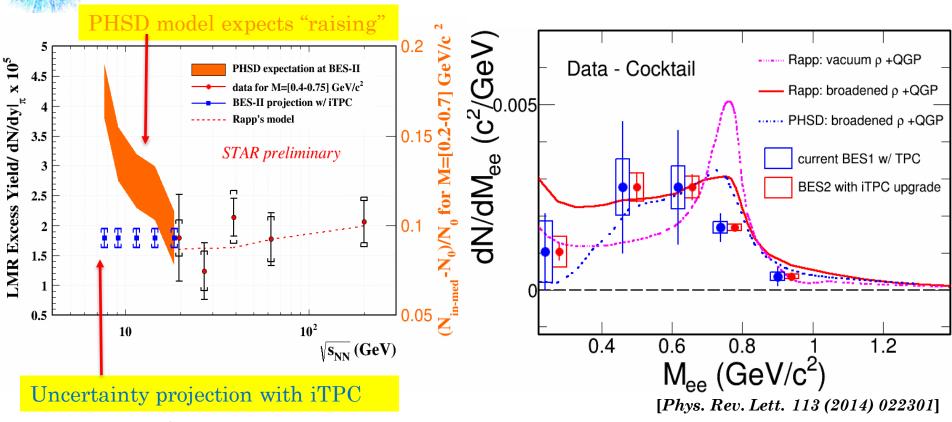





- ✓ Only for rapidity > 0
- ✓ Overlap at 7.7 GeV with collider mode



#### Net-proton cumulants in BES-II with iTPC

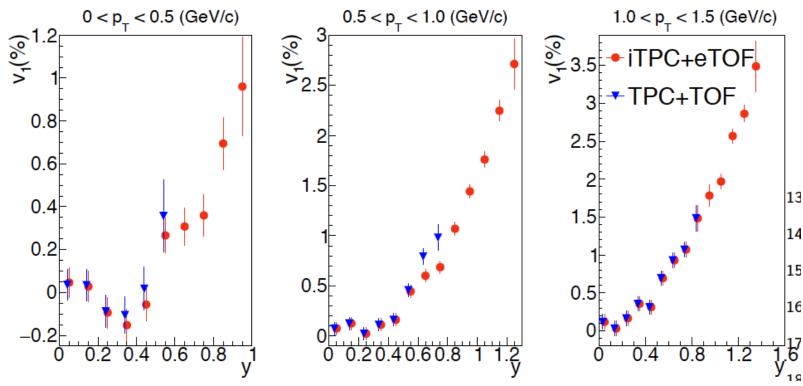



- ✓ BES-I has revealed non-trivial energy dependence
- Uncertainties are coming from the LEReC enhanced luminosity

- ✓ Rapidity length of correlation is important
- ✓ Measure as fct. of  $\Delta y_p$  in wide range is needed to establish true nature of correlation
- ✓ iTPC upgrade will enable this measurement in wider range



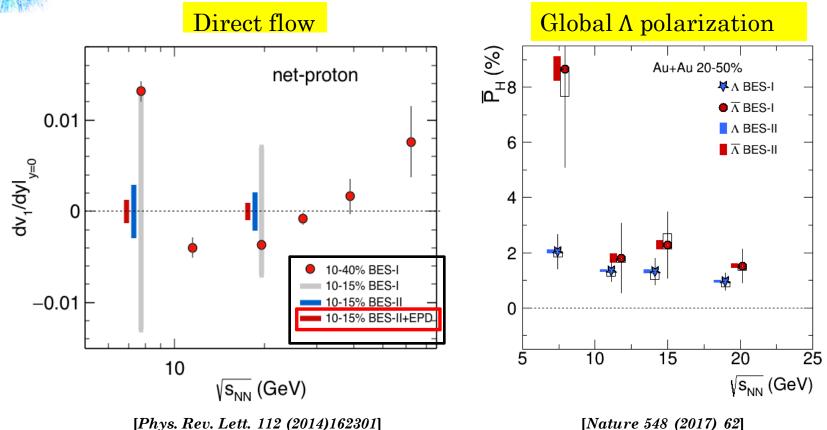
#### e<sup>+</sup>e<sup>-</sup> measurements in BES-II with iTPC




- Systematically study continuum from 7.7-19.6 GeV
- Distinguish model with different rho-meson broadening
- Study effect of total baryon density and lifetime on LMR excess
- ~10 times more statistics
- ~1/3 systematic uncertainties (better PID from improved TPC dE/dx)



## Directed flow v<sub>1</sub> in BES II


#### Based on 19.6 GeV UrQMD model events



- $\checkmark$  Proton  $v_1$  measures early compression
- ✓ The drop in proton and net proton  $dv_1/dy$  at 11.5 GeV indicate softening of EOS
- ✓ Possible signature of a 1<sup>st</sup>-order phase transition
- ✓ Softening would occur at different energies for forward rapidities



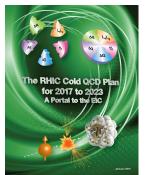
## Physics impact of EPD upgrade



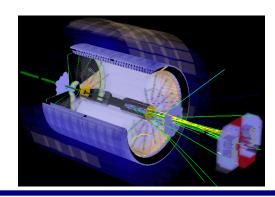
- ✓ EPD is going to reduce the auto-correlations to mid-rapidity measurements: net-protons, v<sub>2</sub>
- ✓ The statistics (resolution) improvement is significant: global  $\Lambda$  polarization



### STAR 2020+


Physics topics of the forward upgrades:

#### Cold QCD:


- What are the nPDFs at low-x?
- How saturated is the initial state of the nucleus?
- Constrain the 3d momentum structure of the proton --> TMDs  $\label{eq:TMDs} % \begin{subarray}{ll} \end{subarray} % \begin{subarray}{ll} \end{$
- Unravel the helicity structure of the proton --> Delta G at low x

#### Hot QCD:

- What is the longitudinal structure of initial condition
- Constraining the temperature dependence profile of transport parameters



Cold QCD plan: [*arXiv:1602.03922*]



Forward Calorimeter System
Forward Tracking System





## Physics program

| Run Year | Collision System and<br>Energy           | Physics/<br>Observables                                                       | Detector in operation                      |
|----------|------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|
| 2017     | p+p @ 500 GeV<br>Au+Au @ 54 GeV          | Spin                                                                          | EPD (1/8 <sup>th</sup> )<br>eTOF prototype |
| 2018     | Zr+Zr, Ru+Ru @ 200 GeV<br>Au+Au @ 27 GeV | e <sup>+</sup> e <sup>-</sup> , CME<br>CVE                                    | Full EPD iTPC prototype eTOF prototype     |
| 2019     | Au+Au@ 14.5-20 GeV<br>Fixed target       | QCD critical point 1 <sup>st</sup> phase transition CVE, CME                  | Full iTPC<br>Full eTOF<br>Full EPD         |
| 2020     | Au+Au@7-11 GeV<br>Fixed target           | $ m QCD\ critical\ point$ $ m 1^{st}$ – order phase transition $ m CVE,\ CME$ |                                            |
| 2020+    | p+Au, p+p, Au+Au @ 200<br>GeV            | Drell-Yan<br>Longitudinal correlations                                        | FTS<br>FCS                                 |

## STAR

## Summary

- > STAR is well prepared for Beam Energy Scan Phase II in 2019&2020
- $\succ$  Many interesting topics will be further studied in BES-II including net-proton cumulants, dilepton, direct flow and  $v_2$
- ➤ With *iTPC*, *eTOF* and *EPD upgrades*, many *physics* potential *will be* significantly *improved* in
  - ✓ Statistics & Systematics
  - $\checkmark$   $p_T$  & rapidity coverage
  - ✓ Particle identification
- > Fixed Target program enables high statistics studies below 7.7 GeV



## backup



## Beam Energy Scan Phase II

| Collision Energies (GeV)                              | 7.7       | 9.1       | 11.5      | 14.5    | 19.6 | Related to          |
|-------------------------------------------------------|-----------|-----------|-----------|---------|------|---------------------|
| Chemical Potential (MeV)                              | 420       | 370       | 315       | 260     | 205  |                     |
| Observables                                           | Mill      | ions c    | of Ever   | nts Nee | eded |                     |
| $ m R_{cp}$ up to $ m p_T 5 GeV$                      | N/A       | N/A       | 160       | 125     | 92   | Turn-off of         |
| Elliptic Flow of $\phi$ meson (v <sub>2</sub> )       | 100       | 150       | 200       | 300     | 400  | QGP                 |
| Local Parity Violation (CME)                          | 50        | 50        | 50        | 50      | 50   | signature           |
| Directed Flow studies(v <sub>1</sub> )                | <b>50</b> | <b>75</b> | 100       | 100     | 200  | 1st order           |
| asHBT (proton-proton)                                 | 35        | 40        | <b>50</b> | 65      | 80   | phase<br>transition |
| Net-proton kurtosis                                   | 80        | 100       | 120       | 200     | 300  | Critical point      |
| Dileptons                                             | 100       | 160       | 230       | 300     | 400  | Chiral              |
| <b>Proposed Event Goals</b>                           | 100       | 160       | 230       | 300     | 400  |                     |
| BES I Event                                           | 4         | N/A       | 12        | 20      | 36   |                     |
| Only part of physics topics in BES II are shown here! |           |           |           |         |      |                     |



## FiXed Target program energies

| Collider<br>Energy | Fixed-Target<br>Energy | Single beam A<br>GeV | Center-of-mass<br>Rapidity | μ <sub>B</sub> (MeV) |
|--------------------|------------------------|----------------------|----------------------------|----------------------|
| 62.4               | 7.7                    | 30.3                 | 2.10                       | 420                  |
| 39                 | 6.2                    | 18.6                 | 1.87                       | 487                  |
| 27                 | 5.2                    | 12.6                 | 1.68                       | <b>541</b>           |
| 19.6               | 4.5                    | 8.9                  | 1.52                       | 589                  |
| 14.5               | 3.9                    | 6.3                  | 1.37                       | 633                  |
| 11.5               | 3.5                    | 4.8                  | 1.25                       | 666                  |
| 9.1                | 3.2                    | 3.6                  | 1.13                       | 699                  |
| 7.7                | 3.0                    | 2.9                  | 1.05                       | 721                  |