

u^{\flat}

^b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Searches for direct pair production of third generation squarks with the ATLAS detector

September 3rd 2017 Federico Meloni

Universitaet Bern, AEC/LHEP on behalf of the ATLAS Collaboration

3rd generation SUSY and naturalness

- Need m(h) at 125 GeV
- The SUSY solution
 - 2 x top squarks
 - Factor of -1 from Feynman rules
 - Same coupling, λ
 - Quadratic corrections cancel

Top and bottom squarks are key ingredients for SUSY and the solution to the SM hierarchy problem.

3rd generation squarks outlook

A wide search program to cover all possible decay modes and mass hierarchy scenarios.

ATLAS SUSY results webpage

conference notes with full 2015+2016 dataset

Short Title of preliminary conference note/paper	Date	√s (TeV)	L (fb ⁻¹)	Document	Plots
stop B-L (RPV) NEW	5/2017	13	36	ATLAS-CONF-2017-036	Linker
stop 1L with DM+HF NEW	5/2017	13	36	ATLAS-CONF-2017-037	Link
stop 2x2	3/2017	13	36	ATLAS-CONF-2017-025	Link
stop 0L	3/2017	13	36	ATLAS-CONF-2017-020	Linke

papers

Short Title of Paper	Date	√s (TeV)	L (fb ⁻¹)	Document	Plots+Aux. Material	Journal
2b+MET (sbottom) NEW	8/2017	13	36	1708.09266 🗗	Link 🗗	submitted to JHEP
stop 2L NEW	8/2017	13	36	1708.03247	Link (+data) 🗗	submitted to EPJC
stop in Z/h	6/2017	13	36	1706.03986 🕜	Link (+data) 🗗	JHEP08 (2017) 006 🕜

In this talk I will highlight a personal selection of recent results.

ATLAS-CONF-2017-037

Four-body decays

Target a single soft isolated lepton

Perform a shape fit of p_T(lep)/E_T^{miss}

 Major SM backgrounds (tt and W+jets) from CR fit

Signal region	bffN		
Preselection	soft-lepton		
Number of $(jets, b-tags)$	$(\geq 2, \geq 1)$		
Jet $p_{\rm T}$ [GeV]	> (400, 25)		
<i>b</i> -tagged jet $p_{\rm T}$ [GeV]	≥ 25		
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 300		
m_{T} [GeV]	< 160		
$am_{\mathrm{T2}}~[\mathrm{GeV}]$	—		
$m_{\rm top}^{\rm reclustered}$ [GeV]	top veto		
$p_{\mathrm{T}}^{\ell}/E_{\mathrm{T}}^{\mathrm{miss}}$	< 0.02		
$\Delta \phi(ec{p}_{ ext{T}}^{ ext{miss}},\ell)$	_		
$\min(\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, b\text{-}\mathrm{jet}_i))$	< 1.5		
$ \Delta \phi(j_{1,2}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) $	> 0.4		
m_{T2}^{τ} based τ -veto [GeV]	_		

	$\mathrm{SR}^{3 ext{-body}}_W$		
Lepton flavour $p_{\rm T}(\ell_1), p_{\rm T}(\ell_2)$ [GeV]	SF > 25,	DF > 20	
<i>mℓℓ</i> [GeV]	[20, 71.2] or > 111.2	> 20	
$n_{b\text{-jets}}$ $M_{\Delta}^{\text{R}} [\text{GeV}]$ $R_{p_{\text{T}}}$ $1/\gamma_{\text{R+1}}$ $\Delta \phi_{\rho}^{\text{R}}$	$= 0 > 95 > 0.7 > 0.7 > 0.9 cos \theta_b + 1.6 = 0.9 cos \theta_b + 1.6 = 0.6 $		

Figure 18: Distributions of BDT score for

(bottom) regions. The SM background the hashed area around the total SM back prediction, signal models are shown, de

Target fully hadronic events

• Exploit recursive jigsaw variables

tt-like decays

 Major SM background (tt with hadronic tau) from CR fit

$$R_{\rm ISR} \equiv \frac{E_{\rm T}^{\rm miss}}{p_{\rm T}^{\rm ISR}} \sim \frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{t}}}$$

Variable	SRC1	SRC2	SRC3	SRC4	SRC5			
$N_{b-\mathrm{jet}}$	≥ 1							
$N_{b-\mathrm{jet}}^\mathrm{S}$		≥ 1						
$N_{ m jet}^{ m S}$	≥ 5							
$p_{\mathrm{T},b}^{0,\mathrm{S}}$	> 40 GeV							
$m_{ m S}$	> 300 GeV							
$\Delta\phi_{\mathrm{ISR},E_{\mathrm{T}}^{\mathrm{miss}}}$	> 3.0							
$p_{\mathrm{T}}^{\mathrm{ISR}}$	$> 400 { m ~GeV}$							
$p_{\mathrm{T}}^{4,\mathrm{S}}$	$> 50 { m ~GeV}$							
$R_{\rm ISR}$	0.30-0.40	0.40-0.50	0.50-0.60	0.60-0.70	0.70-0.80			

ATLAS-CONF-2017-037

8

tt-like decays

Target a single isolated lepton

- Exploit multivariate discriminant
- Reconstruct neutrino p_T and lepton's m_T shift (Δm_T) for a given signal
 - Major SM background (tt) from CR fit

Variable	tN_diag_low		
Preselection	low- $E_{\mathrm{T}}^{\mathrm{miss}}$		
Number of (jets, <i>b</i> -tags)	$(\geq 4, \geq 1)$		
Jet $p_{\rm T}$ [GeV]	>(120, 25, 25, 25)		
$E_{\rm T}^{\rm miss}$ [GeV]	> 100		
$m_{\mathrm{T}} \mathrm{[GeV]}$	> 90		
$R_{ m ISR}$	_		
$p_{\rm T}(t\bar{t})~[{\rm GeV}]$	> 400		
$ \Delta \phi(l,tar{t}) $	> 1.0		
$ \Delta \phi(j_{1,2}, ec{p}_{ ext{T}}^{ ext{miss}}) $	> 0.4		
m_{T2}^{τ} based τ -veto [GeV]	_		
BDT score	$BDT_{low} \ge 0.55$		

arXiv: 1708.09266

Fully hadronic search

Simple final state with a clear detector signature.

Selects events with **two** energetic *b*-jets and missing momentum

- $E_T^{miss} > 250 \text{ GeV}$
- m_{cT}> 350, 450, 550 GeV

 $m_{\text{CT}}^2(v_1, v_2) = [E_{\text{T}}(v_1) + E_{\text{T}}(v_2)]^2 - [\mathbf{p}_{\text{T}}(v_1) - \mathbf{p}_{\text{T}}(v_2)]^2$

 m_{CT} is used to measure the masses of pair-produced semi-invisibly decaying heavy particles.

$$m_{\mathrm{CT}}^{\mathrm{max}} = \frac{m_i^2 - m_X^2}{m_i}$$

More complex decays

The phenomenology changes if more particles are accessible.

- Decays via Z and Higgs bosons can provide additional sensitivity.
- 1 lepton + 4 b-jets (1l4b)
- Targets Higgs boson hadronic decays (bb)
- Major SM background (ttbb) from CR fit

- 3 leptons + 1 b-jets (3l1b)
 - Targets Z boson decays to charged leptons
 - Major SM backgrounds (ttZ, VV) from CR fit, data-driven fakes

JHEP08 (2017) 006

More complex decays

Statistical combination of 3l1b and 1l4b selections

 Sensitivity up to about 900 GeV χ_1 is assumed to be massless

JHEP08 (2017) 006

- $\Delta m(\chi_2,\chi_1) > m(h)$
- 50% BR of χ_2 to Z and h bosons

More realistic models

What if the top squark - neutralino model is too simple?

- Set of pMSSM-inspired models with a non-minimal ewk-ino sector
- More complex decay chains than Run 1 benchmarks

sparticle

 \tilde{t}_1, \tilde{b}_1

 $ilde{\chi}^0_{\mathbf{1}_{\widetilde{V}_1}^0}$

- Consider both top and bottom squark pair production.
- More complex phenomenology, reduced sensitivity.

 $m_{\widetilde{\chi}_{1}^{0}}$ [GeV]

Complementarity between 1L and 2L searches

R-Parity Violating models

R-parity $\underline{\mathbb{R}} = (-1)^{3\underline{\mathbb{R}} + \underline{\mathbb{L}} + \underline{\mathbb{C}}^{S}}$ is a discrete multiplicative symmetry.

- SUSY particles must be produced in pairs
- The Lightest Supersymmetric Particle (LSP) is stable (dark matter)

No reason to assume conservation of R-parity

 Can constrain proton decay with lepton or baryon violating SUSY, but not both

ATLAS-CONF-2017-025

Fully hadronic RPV stops

Targets final states with at least four jets

- $\Delta R_{\min} = \sum_{i=1,2} |\Delta R_i 1|$
- Look at jet pairs that minimise ΔR_{min}
- Major SM backgrounds (QCD multi-jet) from data-driven ABCD method

arXiv: 1704.08493

Single-lepton RPV stops

Targets final states with one lepton and N_{iet} > 8

- Sensitive to a wide range of BSM physics (not just stops)
- Major SM backgrounds (tt, W/Z+jets) suffers from large theoretical uncertainties, from data-driven template fit

ATLAS-CONF-2017-036

Di-lepton RPV stops

Target events with 2 leptons and 2 jets (at least one b-tag)

- Look at bl pairs that minimise m_{bl} asymmetry
- BR to lepton flavours ∞ to neutrino mass hierarchy

Summary

- Searches for sbottom and stops based on full 2015+2016 data (36 fb⁻¹) have given results consistent with the SM expectations.
- Limits on the 3rd generation squark masses close to 1 TeV for the most favourable scenarios
- Stringent limits obtained in pMSSM inspired models, yet some part of the parameter space is still uncovered.

The search for SUSY continues!

• Exciting results ahead with the full Run 2 dataset

Thanks for your attention

EXPERIMENT Run: 300800 Event: 2418777995 2016-06-04 03:47:03 CEST

BACKUP

Higgsino scenario

14

Sbottom results

b

h

 $\tilde{\chi}_1^0$

p

p

~Higgsino scenario (sbottom)

14

The Recursive Jigsaw

The Recursive Jigsaw Reconstruction provides an approximate way to solve kinematic ambiguities, **assuming a known decay tree**.

- unknown longitudinal momenta
- combinatorial ambiguities
- kinematic ambiguities (from multiple invisible objects)

The Recursive Jigsaw

The Recursive Jigsaw

Two leptons search

Compressed spectrum

 Select t₁ pairs recoiling against initial-state radiation (ISR)

Selects events with **two** isolated soft **leptons**

- E_T^{miss}> 200 GeV
- p_T^{ISR}> 150 GeV

$$R_{\ell\ell} = E_{\rm T}^{\rm miss} / (p_{\rm T}(\ell_1) + p_{\rm T}(\ell_2))$$

Exploit ratios to suppress hard processes.

 Challenging estimation of fake and non-prompt leptons

ATLAS-CONF-2017-037

Single lepton search

Complex search targeting many different signal scenarios Baseline selection requires 1 lepton, 4 jets, *b*-jets, high m_T

SR	Signal scenario	benchmark	Exclusion technique	Table
tN_med	Pure bino LSP $(\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0)$	m($\tilde{t}_1, \tilde{\chi}_1^0$)=(600,300)	shape-fit $(E_{\rm T}^{\rm miss})$	6
tN_high	Pure bino LSP $(\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0)$	$m(\tilde{t}_1, \tilde{\chi}_1^0) = (1000, 1)$	cut-and-count	6
tN_diag_low	Pure bino LSP $(\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0)$	m($\tilde{t}_1, \tilde{\chi}_1^0$)=(190,17)	BDT cut-and-count	7
tN_diag_med	Pure bino LSP $(\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0)$	m($\tilde{t}_1, \tilde{\chi}_1^0$)=(250,62)	BDT shape-fit	7
tN_diag_high	Pure bino LSP $(\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0)$	m($\tilde{t}_1, \tilde{\chi}_1^0$)=(450,277)	BDT shape-fit	7
bWN	Pure bino LSP $(\tilde{t}_1 \rightarrow bW\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \tilde{\chi}_1^0) = (350, 230)$	shape-fit (am_{T2})	8
bffN	Pure bino LSP ($\tilde{t}_1 \rightarrow bff' \tilde{\chi}_1^0$)	$m(\tilde{t}_1, \tilde{\chi}_1^0) = (400, 350)$	shape-fit $(p_{\rm T}^{\ell}/E_{\rm T}^{\rm miss})$	8
bC2x_med	Wino NLSP $(\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0)$	$m(\tilde{t}_1, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = (750, 300, 150)$	cut-and-count	9
bC2x_diag	Wino NLSP $(\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0)$	$m(\tilde{t}_1, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = (650, 500, 250)$	cut-and-count	9
bCbv	Wino NLSP $(\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0)$	m($\tilde{t}_1, \ \tilde{\chi}_1^{\pm}, \ \tilde{\chi}_1^0$)=(700,690,1)	cut-and-count	9
bCsoft_diag	Higgsino LSP $(\tilde{t}_1 \to t \tilde{\chi}_1^0, \tilde{t}_1 \to t \tilde{\chi}_2^0, \tilde{t}_1 \to b \tilde{\chi}_1^{\pm})$	$m(\tilde{t}_1, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = (400,355,350)$	shape-fit $(p_{\rm T}^{\ell}/E_{\rm T}^{\rm miss})$	10
bCsoft_med	Higgsino LSP $(\tilde{t}_1 \to t \tilde{\chi}_1^0, \tilde{t}_1 \to t \tilde{\chi}_2^0, \tilde{t}_1 \to b \tilde{\chi}_1^{\pm})$	m($\tilde{t}_1, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{0}$)=(600,205,200)	shape-fit $(p_{\rm T}^{\ell}/E_{\rm T}^{\rm miss})$	10
bCsoft_high	Higgsino LSP $(\tilde{t}_1 \to t \tilde{\chi}_1^0, \tilde{t}_1 \to t \tilde{\chi}_2^0, \tilde{t}_1 \to b \tilde{\chi}_1^{\pm})$	$m(\tilde{t}_1, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = (800, 155, 150)$	shape-fit $(p_{\rm T}^{\ell}/E_{\rm T}^{\rm miss})$	10
DM_low_loose	spin-0 mediator (DM+ $t\bar{t}$)	$m(\Phi/a, \chi) = (20,1)$	cut-and-count	11
DM_low	spin-0 mediator (DM+ $t\bar{t}$)	$m(\Phi/a, \chi) = (20,1)$	cut-and-count	11
DM_high	spin-0 mediator (DM+ $t\bar{t}$)	m($\Phi/a, \chi$)=(300,1)	cut-and-count	11

Dedicated CRs for:

- W+jets
- tt pairs
- single top
- tt + V

Results

Beyond Simplified Models

Results are also interpreted in more realistic models.

- pMSSM models that include more complex decay chains
- Bino/higgsino -> satisfy naturalness and DM relic density