Dark Photon Searches at BESIII

Dayong Wang dayong.wang@pku.edu.cn (for BESIII Collaboration)

PANIC2017, Beijing, Sep 1 2017

Dark sector and portal

BESI Dark photon: characteristics

 $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)_{DM} \otimes \ldots$

$$\mathcal{L}_{SM} = \mathcal{L}_{SM}^F + \mathcal{L}_{SM}^B + \mathcal{L}_{SM}^H$$

 $\mathcal{L}_{DM} = \mathcal{L}_{DM}^{F}(\chi) + \mathcal{L}_{DM}^{B}(\mathbf{U}) + \mathcal{L}_{DM}^{B}(h')$ $\mathcal{L}_{mix} \neq \epsilon F^{\mu\nu DM} F_{\mu\nu}^{EM}$

Higgs–Dark Photon int. $+ \ldots$

- $\Rightarrow M_{\chi} \sim 100 1000 \text{ GeV} \text{ WIMP}$
- $\Rightarrow m_U \sim \text{GeV}$ Dark Photon U or V, A'...
- \Rightarrow Higgs potential breaking $U(1)_{DM}$

 ϵ (or κ): kinetic mixing parameter $\epsilon \sim 10^{-3} \longrightarrow$ milli-charged SM fermions with coupling ϵe to the dark photon (neglecting mixing with the Z)

Low energy, high luminosity e+ e- colliders are believed to be good places to search new physics models with dark sector phenomenology.

- **BEPCII** is the only collider currently running at τ -charm energy
- First collision in 2008, physics run started in 2009
- BEPCII reached peak lumi of 1x10³³ cm⁻²s⁻¹@1.89GeV in April 2016
- BESIII collaboration includes 61 institutes: 36 Chinese institutes, 14 European ones, 5 US ones and 6 from other Asian countries, ~450 collaborators

₿€SⅢ

BEPCII: a **τ-c** Factory

- **Rich of resonances**, charmonia and charmed mesons.
- **D** Threshold characteristics (pairs of τ , D, D_s, charmed baryons...).
- □ **Transition** between perturbative and non-perturbative **QCD**.
- New hadrons: glueballs, hybrids, multi-quark states

New Physics: high lumi, large datasets, hermetic detector with good performance

BESIII Detector

Solenoid Magnet: 1 T Super conducting

Clean environment and high luminosity at BESIII are helpful for indirect probe of new physics

BESIII data samples

~ 0.5 B	$\psi(3686)$ events	~ 24×CLEO-c

- \sim 1.3 B J/ψ events \sim 21×BESII
- ~ 2.9/fb ψ (3770) ~ 3.5×CLEO-c
- ~ 9/fb XYZ states above 4 GeV Unique

Dark photon search with ISR

Search for narrow structure on top of the continuum QED background

 $e^+ \: e^- \to \gamma_{\text{ISR}} \: l^+ \: l^-$

Use an untagged photon method to perform this analysis.

Event selection:
$$e^+e^- \rightarrow \mu^+\mu^-\gamma_{ISR}$$
 and $e^+e^- \rightarrow e^+e^-\gamma_{ISR}$

Cover mass region: 1.5 GeV/c 2 ~ 3.4 GeV/c < 1.5 GeV/c 2 : $\pi^+\pi^-$ background dominates > 3.4 GeV/c 2 : hadronic qq-bar process

arXiv:1705.04265, submitted to Phy. Lett. B

- Fit QED background with 4 order polynomial
- No peaking structure observed
- Combined statistical significance less than 3 σ
- 90% confidence level limit obtained
 - with profile likelihood approach
 - W. Rolke et al., NIM A 551, 493 (2005)
 - systematic uncertainty included

BESIII ISR search results

12

BESIT DP search through meson decay

Theoretical prediction for the reach of dark photon. The black dashed line represents $P=\eta'$

This process was first observed by BESIII with 225M J/ψ sample **Phys. Rev. D 89, 092008 (2014)**

J Fu et al., Mod. Phys. Lett. A 27, 1250223 (2012)

With 1.3 billion J/ψ data, it is a good opportunity to improve the precision of $B(J/\psi \rightarrow \eta' e^+ e^-)$ and search for the dark photon through decays $J/\psi \rightarrow$ $\eta' U, U \rightarrow e^+ e^-$ at BESIII.

EXAMPLE $J/\psi \rightarrow \eta' e^+ e^-$ Event selection

- Selection of $\gamma e^+ e^- \pi^+ \pi^- / \gamma \gamma e^+ e^- \pi^+ \pi^-$
 - Four good charged tracks with e^+e^- identified successfully
 - At least one/two good photons in EMC
 - $e^+e^-\pi^+\pi^-$ successful vertex fit
 - $\gamma e^+ e^- \pi^+ \pi^- / \gamma \gamma e^+ e^- \pi^+ \pi^-$ 4C fit with $x_{4c}^2 < 100$

- Addition selection for each mode
 - $\eta' \rightarrow \gamma \pi^+ \pi^-$ Veto π^0 : M($\gamma e^+ e^-$) \notin (0.10,0.16) GeV/c²
- $\eta' \rightarrow \eta \pi^+ \pi^-$ Select η : $M(\gamma\gamma) \in (0.48, 0.60) \text{ GeV/c}^2$

• Signal: MC shape \bigotimes Gaussian • Non-peaking background: Chebychev Polynomial • Peaking background: MC shape (γ conversion/ $J/\psi \rightarrow \Phi \eta'$)

Signal Yield	6436.9 ± 87.1	2494.4 ± 51.3		
Background Yield	981.4 ± 43.8	27.3 ± 10.0		
Efficiency (%)	28.21	19.94		
$B(J/\psi \to \eta' e^+ e^-) (10^{-5})$	$5.98\pm0.08_{stat}\pm0.32_{syst}$	$5.65 \pm 0.12_{stat} \pm 0.33_{syst}$		
Combined result(10^{-5})	$5.81 \pm 0.07_{st}$	$a_{tat} \pm 0.29_{syst}$		
mproves on the previous BESIII measurement of $B(J/\psi \rightarrow \eta' e^+ e^-)$				
2017/9/1 PANIC2017	Phy	s. Rev. D 89,092008 (2014) 15		

Belection, resolution, efficiency

- Additional event selection criteria
 - 1. Without γ conversion veto
 - 2. η' signal region [0.93,0.98] GeV
 - 3. $M(e^+e^-) > 70 \text{ MeV/c}^2$
- Resolution and selection efficiency from signal MC
 - The resolution σ_m of dark photon signal and selection efficiency depend on dark photon mass m_U .

€€S ■ Dark photon search strategy

17

- Strategy:
 - Assuming the background is smooth, dark photon would appear as a narrow peak on the top of the background.
 - We look for a narrow peak signal on invariant mass of e⁺e⁻ by a step of 2 MeV in [0.1, 2.1] GeV range.

- Signal description:
 - Shape: A sum of two Crystal Ball (CB) functions with opposite tails.

 $y = CB_1(x; \mu, \sigma_1, n_1, \alpha_1) + f * CB_2(x; \mu, \sigma_2, n_2, \alpha_2)$

 Parameters are interpolated based on signal MC samples generated with different m_U hypotheses.

- Background description:
 - Shape: A sum of 2nd order polynomial and exponential, parameters are determined from data fit. $y = p0 + p1 \cdot x + p2 \cdot x^2 + e^{\tau \cdot x}$
 - ω and Φ regions are excluded.

- Set combined limits @ 90% C.L. on the branching fractions
 - 1. B($J/\psi \rightarrow \eta' U$) ×B($U \rightarrow e^+e^-$)
 - 2. B($J/\psi \rightarrow \eta' U$): B($U \rightarrow e^+e^-$) is considered as a function of m_U from Phys. Rev. D 79, 115008 (2009).

2017/9/1 PANIC2017

$\begin{array}{c} \textbf{Exclusion limit on mixing} \\ \textbf{strength } \varepsilon \end{array}$

$$\frac{\mathcal{B}(J/\psi \to \eta' \mathbf{U})}{\mathcal{B}(J/\psi \to \eta' \gamma)} = \varepsilon^2 |F(m_{\mathbf{U}}^2)|^2 \frac{\lambda^{3/2}(m_{J/\psi}^2, m_{\eta'}^2, m_{\mathbf{U}}^2)}{\lambda^{3/2}(m_{J/\psi}^2, m_{\eta'}^2, 0)}$$

 m_X :Mass of particle X

arXiv: 0904.1743

$$\lambda(m_1^2, m_2^2, m_3^2) = (1 + \frac{m_3^2}{m_1^2 - m_2^2})^2 - \frac{4m_1^2 m_3^2}{(m_1^2 - m_2^2)^2}$$

2017/9/1 PANIC2017

B€SⅢ

- BESIII has joined the world wide efforts of DP search.
- DP search with untagged ISR events in 1.5 GeV/c² ~ 3.4 GeV/c² set competitive limit on the mixing strength between 10⁻³ and 10⁻⁴ in this region
- The branching fraction of $J/\psi \rightarrow \eta' e^+ e^-$ is updated with 1.3 billion J/ψ data to be $(5.81 \pm 0.07_{stat} \pm 0.29_{syst}) \times 10^{-5}$.
- DP is searched $J/\psi \rightarrow \eta' U$, $U \rightarrow e^+e^-$. Upper limits on B($J/\psi \rightarrow \eta' U$) ×B($U \rightarrow e^+e^-$) and B($J/\psi \rightarrow \eta' U$) is set for the first time, the mixing strength ε constrained
- As the only currently running tau-charm factory, BESIII has great potential with unique datasets: More to come, stay tuned!

Thanks!

Extra slides...

2017/9/1 PANIC2017

Dayong Wang