Physics at HL-LHC with the upgraded ATLAS detector

Andrea Dell'Acqua, CERN EP-ADE <andrea.dellacqua@cern.ch>

On behalf of the ATLAS Collaboration

A road to a luminous future

- European Strategy for Particle Physics, 2013 "Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design by around 2030"
- The HL-LHC project funding was approved in June 2014 and its design study came to a close on Oct. 31st, 2015. The HL-LHC is going to happen!
- In this talk:
 - HL-LHC
 - The ATLAS detector upgrade programme
 - Physics at the HL-LHC with ATLAS
 - SM physics
 - Higgs boson physics
 - BSM

HL-LHC in a nutshell

LHC / HL-LHC Plan

- As we speak, LHC continues to exceed design luminosity while still running at a reduced \sqrt{s} =13 TeV.
- Upgrades during Long Shutdown 2 will allow running at the design c.m. energy of $\sqrt{s=14}$ TeV and at $\mathcal{L}=2-3x10^{34}$ cm⁻²s⁻¹. Target is an integrated luminosity of 300 fb⁻¹ by ~2025.
- HL-LHC, installed during Long Shutdown 3, will run at luminosities £=5-7.5x10³⁴cm⁻²s⁻¹ with the target of increasing integrated luminosity by a factor 10 (3000 fb⁻¹) by 2037.
- Major strain on the machine, on the experiments and on computing.

The HL-LHC challenges

- High luminosity means a big number of simultaneous events:
 <µ_{PU}> = 140-200
- Requires very granular detectors, very good vertex reconstruction capabilities and bunch crossing identification, fast trigger etc.
- Very high radiation doses
- Detectors aging very quickly and having to be replaced/refurbished
- Accessibility issues in certain regions of the detector

The ATLAS upgrade

- New all-silicon inner tracker with increased coverage of |η|<4 and increased radiation tolerance (HL-LHC)
 - Pixel: 5 inner barrels and forward disks, occupancy <0.1%
 - Strips: 4 extended barrels and 6 disks, occupancy <1%
- Replace inner end cap muon stations with a New Small Wheel composed of MicroMeGaS and sTGC for improved tracking and trigger performance (Phase I)
- New RPC layers in the barrel Muon system (|η|<1) for increased trigger coverage and performance (HL-LHC)
- Readout electronics replaced in the Lar and Tile calorimeters
- Proposed High Granularity Timing Detector for improved bunch crossing ID and pile-up suppression, 2.4<|η|<4.3 (HL-LHC)
- Hardware trigger with L0<1 MHz and L1<400 kHz
- High Level Trigger with 10 kHz output (permanently recorded data)
- "Custom hardware" triggers for data streaming at rates 1-40 MHz
- New Inner Tracker, Calorimeter, Muon triggers

z [mm]

ATLAS HL-LHC simulation strategies

- HL-LHC simulation must encompass upgraded ATLAS detector scenarios and trigger systems, a collision energy of \sqrt{s} =14 TeV and high pile-up, $<\mu_{PU}>=140/200$.
- For physics analysis, use generator level Monte Carlo samples
 - Overlay with jets from dedicated pile-up library, from fully simulated pile-up jet samples
 - To simulate the detector response, smear p_T and energy of reconstructed physics objects using smearing functions based on fully simulated samples
 - Apply reconstruction efficiencies for electrons, muons, jets...
 - Apply trigger efficiency functions to emulate triggers
- Extrapolation from Run I/II results
 - Signal and background are scaled to higher luminosities and higher collision energy
 - Assume detector performance and analysis techniques remain unchanged
 - Much room for improvements!
- With huge statistics at the HL-LHC, systematics can be the dominant factor in measurement precision
 - Current experimental systematics scaled to best guess for HL-LHC
 - Results provided with current theory systematics and without theory systematics

In the following: Three ATLAS detector upgrade scenarios

- Reference
- Middle
- Low

 $<\mu_{PU}>=200$ (unless otherwise indicated)

Pile-up mitigation

- Typical jet selections require: p_T^{jet} >30 GeV and $|\eta^{jet}|$ <3.8
- For $<\mu_{PU} > =200$ we expect 4.8 pile-up jets per event which satisfy the request
- To reduce jet sensitivity to pile-up a parameterized track confirmation requirement is applied, based on selecting on charged vertex fraction, R_{p_T}

$$R_{p_T} = \frac{\sum_{tracks} p_T}{p_T^{jet}}$$

- Applied to all non b-tagged jets with $p_T^{jet} < 100$ GeV and $|\eta^{jet}| < 3.8$, the selection reduces pile-up by a factor 50
 - 0.2 selected pile-up jets per event
- More sophisticated pile-up rejection criteria being developed

SM physics: Vector boson scattering

- Sensitive test of the vector boson vertices in the SM
- With 3000 fb^{-1} :
 - Clean observation of W[±]W[±],ZZ and WZ scattering above backgrounds
 - Sensitive to dimension-8 operators at scales ~1 TeV, good case study for BSM

- Significance of SM W[±]W[±]jj production: ~11σ
- Cross section precision $\Delta \sigma / \sigma = 5.9\%$

SM physics: Flavour Changing Neutral Currents, $t \rightarrow Zq$ and $t \rightarrow Hq$

- FCNC not allowed in SM at tree level, only via loops: highly suppressed
- Higher rate predicted in BSM models
- Signature: $t\bar{t}$, one top $t \rightarrow Wb$, one top goes FCNC \rightarrow Strong requirements on event reconstruction

 $t \rightarrow Hq, H \rightarrow b\overline{b}$:

use event categories based on number of (**b**)-jets and discriminant variable, **D**

Limits on BR(t \rightarrow Zq) ~ 10⁻⁴ Limits on BR(t \rightarrow Hq) ~ 10⁻⁴

ATL-PHYS-PUB-2016-029

Higgs boson physics: coupling precisions

- Full set of HL-LHC coupling projections are based on Run I analyses (<μ_{PU}>=140)
- with 3000 fb⁻¹:
 - W/Z couplings to 3%
 - μ coupling to 7%
 - t,b, τ couplings to 8-12%
- Projections do not include upgraded detector designs nor improvements in analysis techniques

10

s = 14 TeV

- [Ldt = 300 fb⁻¹

— Ldt = 3000 fb⁻¹

10²

m, [GeV]

Higgs boson physics: Signal strength

- Signal strength $\mu = \sigma / \sigma_{SM}$ used to express compatibility with theory
- Goal is to minimize the uncertainty of the measurements $(\Delta \mu / \mu)$
 - With high statistics QCD and PDF uncertainties become significant

ATL-PHYS-PUB-2014-016/017

Higgs boson physics: a rare decay, $H \rightarrow J/\psi\gamma$

- Sensitive to the Higgs boson coupling to the charm quark
 - SM expectation: BR(H \rightarrow J/ $\psi\gamma$)=(2.9 \pm 0.2)×10⁻⁶
 - ATLAS limit from Run I: BR(H \rightarrow J/ $\psi\gamma$)=1.5×10⁻³
- Using $J/\psi \rightarrow \mu^+\mu^-$ decay mode
- $Z \rightarrow J/\psi \gamma$ as a cross-check
- Using multivariate analysis, ~3 signal events, 1700 background events in m(μ⁺μ⁻γ)∈115-135 GeV
- Expected limits at 95% c.l.:
 - \forall BR(H→J/ψγ)=(44⁺¹⁹₋₁₂)×10⁻⁶
 - $\checkmark \sigma(gg \rightarrow H) \times BR(H \rightarrow J/\psi\gamma) = (3.1^{+0.9}_{-1.3}) \times 10^{-6}$ (no background systematics)

ATL-PHYS-PUB-2015-043

Higgs boson physics: $\Gamma_{\rm H}$ from off-shell couplings

- Measure off-shell production of $H \rightarrow ZZ^* \rightarrow 4\ell$ with $m(4\ell)>220 \text{ GeV}$
- Use m(4*l*) shape and matrix element to discriminate between signal and background
- Off-shell production used to constrain the Higgs boson width $\Gamma_{\rm H}$
- For $\Gamma = \Gamma_{SM}$ combining with on-shell measurement (assuming off-shell measurement dominates): $\Gamma_{H} = 4.2^{+1.5}_{-2.1}$ MeV (stat.+sys)
- Run I limit: Γ_{H} <22.7 MeV at 95% C.L. (WW, ZZ)

Higgs boson physics: Vector Boson Fusion

- $H \to WW \to \ell \nu \ell \nu \ (\ell = e, \mu)$
 - Challenging due to large backgrounds (dominant systematic uncertainty)
 - Good benchmark for performance at HL-LHC: E_T^{miss}, central-jet veto, b-tagging for forward jets
- $H \rightarrow ZZ^* \rightarrow 4\ell$
 - Must disentangle ggF/VBF production modes
 - Background from pile-up jets in the forward region
 - Use BDT method for optimal signal/background separation
 - Nice case study to quantify benefit from upgraded detector

Different systematic assumptions: FULL or NONE		ΖΖ <μ _{ΡU} > = 200 FULL	ΖΖ <μ _{ΡU} > = 200 NONE	WW <µ _{PU} >=200 FULL	WW <µ _{PU} >=200 NONE
	$\Delta \mu$	0.18	0.15	0.20	0.14
	Significance	7.2σ	10.2 <i>σ</i>	5.7σ	8.0 σ

A.Dell'Acqua - PANIC2017

ATL-PHYS-PUB-2015-046

HH production: $HH \rightarrow b\bar{b} \tau^+ \tau^-$

All final states of $\tau\tau$ considered

		trigger	signal events in 3000 fb ⁻¹	background in 3000 fb ⁻¹
τlep	TLEP	single e/μ	9	6,200
τlep	THAD	p_T <25GeV	20	880
THAD	THAD	di- τ : p_T vis $(\tau) > 40$ GeV	19	830

 $au_{LEP} au_{LEP}$ does not add to significance and is not further analysed

Combined significance $HH \rightarrow b\bar{b} \tau^+\tau^-$ production (no syst. error): 0.6 σ

HH production: $HH \rightarrow b\overline{b}b\overline{b}$

- Main background is QCD multi-jet production
- Extrapolation from Run II results
 - Assumes the current detector (i.e. no upgrades), trigger & flavor tagging performance: no consideration of extra pile-up jets
 - Run II trigger threshold p_T^{jet} >30 GeV \rightarrow HL-LHC p_T^{jet} >75 GeV

 $HH \rightarrow b\bar{b}b\bar{b}$ production (no systematic error): combined significance $\rightarrow 0.6\sigma$

Jet Threshold [GeV]	Background Systematics	σ/σ_{SM} 95% Exclusion	$\lambda_{HHH}/\lambda_{HHH}^{SM}$ Lower Limit	$\lambda_{HHH}/\lambda_{HHH}^{SM}$ Upper Limit
30 GeV	Negligible	1.5	0.2	7
30 GeV	Current	5.2	-3.5	11
75 GeV	Negligible	2.0	-3.4	12
75 GeV	Current	11.5	-7.4	14
				•

ATL-PHYS-PUB-2016-024

HH production $HH \rightarrow b\bar{b}\gamma\gamma$

- After selections: 8.4 signal events, 47 background
- Significance: 1.3σ (no systematic error)

HH production: $t\bar{t}$ HH production

- $\sigma(t\bar{t}HH) \sim 1 \text{ fb}$
 - Use $HH \rightarrow b\bar{b}b\bar{b}$ final state and semi-leptonic final state of $t\bar{t}$
 - Single lepton trigger requirement (e, μ)
 - 6 b-jets, 2 light jets, e/μ and E_T^{miss}
- Cut-based analysis: no cut on Higgs candidate mass, too many combinatorics!

- For \geq 5 b-tags: 25 signal events, 7100 background
 - Background is dominated by c-jets mistagged as b-jets from $W \rightarrow cs$
- Significance: 0.35σ (no systematic error)

ATL-PHYS-PUB-2016-023

Beyond the SM: Direct production of stau pairs

- Assume 100% branching ratio to τ and LSP, $\tilde{\chi}_1^0$
- Signature:

<u>G</u>e∕

Events / 50

10² ∎

10 ⊨

10-1

10

400

500

600

- 2τ -jets
- Large missing energy

ATLAS Simulation

Preliminary

- Define signal region in $m_T(\tau_1, E_T^{miss}) + m_T(\tau_2, E_T^{miss})$
- Main backgrounds: $W + jets, t\bar{t}$

ATL-PHYS-PUB-2016-021

800

Beyond the SM: Direct production of Charginos and Neutralinos decaying to Wh

- Signature:
 - \blacksquare Chargino to leptonic W \rightarrow clear signature
 - Neutralino to $h \rightarrow b\overline{b}$: benefits from detector upgrades
 - Large missing energy
- Background: W+jets, $t\bar{t}$, single top, ttV

2'

W

 $\tilde{\chi}_1^{\pm}$

 χ_2^{\vee}

 \boldsymbol{n}

Beyond the SM: Direct stop pair production with compressed mass spectra

- Compressed mass spectra
- Scenario with low stop-neutralino mass difference
 - $m(\tilde{t}) m(\tilde{\chi}_1^0) \cong m(t)$
- Signature: 2 leptons + 2 b-jets +missing E

p

Summary

- A clear roadmap to HL-LHC has been set
- The ATLAS Collaboration is proceeding with an upgrade programme aimed at coping with a new, very harsh and challenging environment of increased pile-up and large background
- The HL-LHC will provide very useful insights into the Standard Model and Higgs boson physics
- Measuring the Higgs boson self-coupling is a rather formidable challenge and one of the main targets of the ATLAS experiment at the HL-LHC
- Studies are still ongoing, the rather conservative approach adopted until now suggests that substantial improvements are possible and that we will probably do better than presented here

Higgs boson physics: rare decays

Probe coupling to 2nd generation fermions

 7σ observation for $<\mu_{PU}>=140, 25\%$ (stat) \oplus 17% (syst.) precision

Probe for Yukawa couplings Anticipate to set the limit of the BR(H \rightarrow J/ ψ \gamma at 15xSM expectation First limit set at 600xSM (PRL 114 (2015) 121801)

Probe for new physics in the loop and important for coupling measurement

3.9 σ observation for $\langle \mu_{PU} \rangle = 140$, 25% (stat) $\oplus 17\%$ (syst.) precision

- Rare Higgs decays are sensitive probes for new physics
- ✓ Observation at the SM rate for H→ $\mu\mu$, H →Z γ only possible with the HL-LHC dataset

