Top-quark production

Markus Cristinziani for the ATLAS Collaboration

XXI Particles and Nuclei International Conference Beijng, September 2017

The top quark

The most massive known elementary building block of matter

UNIVERSITÄ

The top quark

The most massive known elementary building block of matter $\Gamma_t \sim \frac{G_F m_t^3}{8\pi\sqrt{2}} \left(1 - \frac{m_W^2}{m_t^2}\right)^2 \left(1 + 2\frac{m_W^2}{m_t^2}\right)$ 200

- short lifetime
- $\tau_{top} = 4 \cdot 10^{-25} s \rightarrow no bound states$

- role in loop diagrams
- large Yukawa coupling yt ~ 1

UNIVERSI

The top quark

The most massive known elementary building block of matter $\Gamma_t \sim \frac{G_F m_t^3}{8\pi\sqrt{2}} \left(1 - \frac{m_W^2}{m_t^2}\right)^2 \left(1 + 2\frac{m_W^2}{m_t^2}\right) \qquad \qquad 200$

- short lifetime
- $\tau_{top} = 4 \cdot 10^{-25} s \rightarrow no bound states$

- role in loop diagrams
- large Yukawa coupling yt ~ 1

Top quark physics at hadron colliders

- test Standard Model
- search for new resonances or interactions

• important background to new physics searches to the searches to the searches [M. Cristinziani | Top quark production | PANIC 2017 | 北京 | 01–Sep–2017]

UNIVERSIT

Top-quark production

erc

Top-quark pairs via strong interaction

830 pb @ 13 TeV

Single-top quarks via weak interaction

t-channel 210 pb @ 13 TeV

M. Cristinziani Top quark production PANIC 2017 北京 01–Sep–2017]

h s-channel

Wt channel 72 pb @ 13 TeV

Top-quark production

erc

Top-quark pairs via strong interaction

830 pb @ 13 TeV

UNIVERSITÄT BONN

Weak decay

- governed by CKM matrix, $BF(t \rightarrow Wb) \sim 1$
- no FCNC transitions at tree level

Weak decay

- governed by CKM matrix, $BF(t \rightarrow Wb) \sim 1$
- no FCNC transitions at tree level

「ATLAS EXPERIMENT MENT MENT M. Cristinziani Top quark production PANIC 2017 北京 01-Sep-2017]

Weak decay

- governed by CKM matrix, $BF(t \rightarrow Wb) \sim 1$
- no FCNC transitions at tree level
- $W \rightarrow \ell \nu$, $\tau_{had} \nu$ or $q\bar{q}$

tt final states

- Dilepton: 2b, 2l, 2v• Lepton+jets: 2b, 2q, 1l, 1v • All hadronic: 2b, 4q

- With τ_{had} leptons

ATLAS [M. Cristinziani | Top quark production | PANIC 2017 | 北京 | 01-Sep-2017]

Weak decay

- governed by CKM matrix, $BF(t \rightarrow Wb) \sim 1$
- no FCNC transitions at tree level
- $W \rightarrow \ell \nu$, $\tau_{had} \nu$ or $q\bar{q}$

「M. Cristinziani | Top quark production | PANIC 2017 | 北京 | 01–Sep–2017]

Inclusive tt production cross section

Several measurements at 3 collision energies • stringent tests of QCD with heavy quarks • can be sensitive to potential new physics but also: top quark mass in well defined renormalisation scheme

erc

M. Cristinziani Top quark production PANIC 2017 北京 01–Sep–2017]

UNIVERSITAT

tt production in l+jets channel at 8 TeV

Split selection in 3 signal regions

- different backgrounds
- sensitive to additional radiation

Analysis

erc

- W+jets background shape modelled using Z+jets in data
- multi-jet from data, including normalisation
- neural network with kinematic observable inputs
- Iikelihood fit with nuisance parameters

Result

- σ_{tt̃} = 248.3 ± 0.7_{stat} ± 14.2_{syst} pb
- dominant uncertainties
 - MC modelling
 - jet energy scale, b-tagging

PANIC 2017 北京 01–Sep–2017 了 [17]

UNIVERSIT/

tt inclusive production summary

M. Cristinziani Top quark production PANIC 2017 北京 01–Sep–2017]

UNIVERSITÄT

Motivation

detailed test of pQCD, constrain PDF and MC parameters

tt differential cross section

Motivation

erc

detailed test of pQCD, constrain PDF and MC parameters

General analysis strategy

- tight event selection \rightarrow pure $t\bar{t}$ sample
- tt / top quark kinematic reconstruction
- background subtraction
- corrections: acceptance, resolution → unfolding

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma_{i}}{\mathrm{d}X} = \frac{1}{\sigma} \frac{\mathrm{unfold}(s_{i}^{X} - b_{i}^{X})}{\Delta_{i}^{X} \cdot \int \mathcal{L}\mathrm{d}t}$$

- $X = p_T$, η of top-quark; p_T , η , $m_{t\bar{t}}$ of top-quark pairs, ...
- compare to theory predictions at particle of parton level

tt differential cross section

Motivation

erc

detailed test of pQCD, constrain PDF and MC parameters

General analysis strategy

- tight event selection \rightarrow pure $t\bar{t}$ sample
- tt / top quark kinematic reconstruction
- background subtraction
- corrections: acceptance, resolution → unfolding

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma_{i}}{\mathrm{d}X} = \frac{1}{\sigma} \frac{\mathrm{unfold}(s_{i}^{X} - b_{i}^{X})}{\Delta_{i}^{X} \cdot \int \mathcal{L}\mathrm{d}t}$$

- $X = p_T$, η of top-quark; p_T , η , $m_{t\bar{t}}$ of top-quark pairs, ...
- compare to theory predictions at particle of parton level

Results at 7, 8 and 13 TeV

EPJ C73 (13) 2261, PR D90 (14) 072004, JHEP 06 (15) 100 [7 TeV] — EPJ C76 (16) 538, PR D93 (16) 032009 [8 TeV] — EPJ C77 (17) 292, ATLAS-CONF-2017-044, 1708.00727 [13 TeV]

M. Cristinziani | Top quark production | PANIC 2017 | 北京 | 01–Sep–2017]

Analysis

erc

- Resolved and boosted regime
- full phase space parton or particle level • avoids model-dependent extrapolations
- absolute and relative distributions
- top and tt system

UNIVERSITÄ

Findings generally modelling ok

Analysis

erc

- Resolved and boosted regime
- full phase space parton or particle level
 - avoids model-dependent extrapolations
- absolute and relative distributions
- top and tt system

M. Cristinziani Top quark production PANIC 2017 北京 01–Sep–2017]

UNIVERSITAT

Findings

- generally modelling ok
- p_T(top) not well described
 - Powheg+Herwig7 best description
- y(tt̄) not well described

• sensitive to different PDFs

tt modelling of top p_T distribution

ℓ +jets 13 TeV

erc

p_T(top) not well described

- already observed at 7 and 8 TeV, ATLAS and CMS
- observe in ℓ +jets, dilepton and all hadronic channels also at 13 TeV

[M. Cristinziani | Top quark production | PANIC 2017 | 北京 | 01–Sep–2017]

IVFRSITAT

ewk corrections and foremost full NNLO calculations needed for data/MC agreement

1708.00727, EPJC 77 (2017) 299, ATLAS-CONF-2016-100

tt eµ differential: lepton observables

Fiducial lepton and dilepton distributions compared to

- tt NLO and LO multileg generators
- parton shower and hadronisation

Results

erc

• in general good agreement

sensitive to gluon PDF

pole mass, $\delta m_t < 2 \text{GeV}$ (see next talk)

M. Cristinziani Top quark production PANIC 2017 北京 01-Sep-2017]

JNIVERSITAT

Top-quark production

erc

Top-quark pairs via strong interaction

830 pb @ 13 TeV

Single-top quarks via weak interaction

t-channel 210 pb @ 13 TeV

M. Cristinziani Top quark production PANIC 2017 北京 01-Sep-2017]

h s-channel

11 pb @ 13 TeV

Wt channel 72 pb @ 13 TeV

Top-quark production

Single-top quarks via weak interaction

t-channel 210 pb @ 13 TeV

[M. Cristinziani | Top quark production | PANIC 2017 | 北京 | 01–Sep–2017]

s-channel 11 pb @ 13 TeV

Signature

erc

• l + E_T^{miss} + b-tag + forward jet

Backgrounds

• tt, W+jets, multi-jets

Neural networks to enhance S/B

Separate cross-section

• for l^+ and l^-

Fiducial

- fiducial cross section to reduce systematic uncertainties
- fiducial volume defined using stable particles with cuts close to selection

Results

- σ_{tq} (fid.) = 9.87 pb ± 5.8%
- $\sigma_{\bar{t}q}$ (fid.) = 5.77 pb ± 7.8%

Uncertainties

• systematically dominated: JES, NLO matching choice, lepton reconstruction

t-channel at 8 TeV: total cross section

Total cross section

erc

- fiducial cross section extrapolated to full phase space
- $\sigma(tot) = N_{tot}/N_{fid} \cdot \sigma(fid)$
 - $\sigma_{tq}(tot) = 56.7^{+4.3}_{-3.8} \, pb$
 - $\sigma_{\bar{t}q}(tot) = 32.9^{+3.0}_{-2.7} \text{ pb}$

compared to different generators

M. Cristinziani | Top quark production | PANIC 2017 | 北京 | 01–Sep–2017]

UNIVERSITÄT

Ratio R_t • $R_t = \sigma_{tq} / \sigma_{\bar{t}q} = 1.72 \pm 0.09$

• without unitarity assumption • $|f_{LV} \cdot V_{tb}|^2 = \sigma_{meas} / \sigma_{pred} = 1.029 \pm 0.048$

t-channel at 8 TeV: differential cross section

Region with enhanced purity • select events with O_{NN} > 0.8

Unfolded distributions

• parton level

erc

• $p_T(t)$, |y(t)| for t/\bar{t}

particle level

• $p_T(t)$, |y(t)|, $p_T(j)$, |y(j)| for t/\bar{t}

「ATLAS」 「M. Cristinziani Top quark production PANIC 2017 北京 01-Sep-2017]

good agreement with NLO predictions • main sources of systematics

• similar to fiducial measurement

Single top – Wt channel

Dilepton selection with 1 b-tag

• main background tt

erc

fit to BDT discriminants in signal and b

• 7.7 σ significance σ_{Wt} (8 TeV) = $23.0 \pm 1.3 \,(\text{stat.})^{+3.2}_{-3.5} \,(\text{syst.}) \pm 1.1 \,(\text{lumi.}) \,\text{pb}$

ackground regions	 ✓ 500 400 300 200 100
y 2016 I	
i)	$\Delta TLAS \qquad \sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$
D	Measured fiducial Wt+tt cross-section Total uncertainty Stat. uncertainty Predicted fiducial cross-sections:
	POWHEG-BOX+PYTHIA DR CT10 σ ^{Wt} at NLO+NNLL, σ ^{tf} at NNLO+NNLL POWHEG-BOX+PYTHIA DR CT10
	POWHEG-BOX+PYTHIA DS CT10 σ ^{Wt} and σ ^{tī} at NLO POWHEG-BOX+HERWIG DR CT10
b	MC@NLO+HERWIG DR CT10
inty:	MC@NLO+HERWIG DR MSTW2008 σ^{Wt} and $\sigma^{t\bar{t}}$ at NLO
0	MC@NLO+HERWIG DR NNPDF 2.3

ents / 0.05

700

ATLAS

1-jet 1-tag

Post-fit

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

UNIVERSITAT BONN

JHEP 01 (2016) 064

Single top – Wt channel

Dilepton selection with 1 b-tag

• main background tt

erc

JHEP 01 (2016) 064 1612.07231 16/22

Single top – s-channel

Motivation

erc

 SM process not yet seen, other resonances may decay to tb

Strategy

- 2j2b (SR), 2j1b (t-channel, W+jets)
- matrix-element method employed
- combined ML fit to SR and CR

Iepton charge discriminates W+jets

M. Cristinziani Top quark production PANIC 2017 北京 01-Sep-2017]

First evidence at LHC $\sigma_s = 4.8 \pm 0.8(\text{stat.})^{+1.6}_{-1.3}(\text{syst.}) \text{ pb}$

• expected significance 3.9σ • observed significance 3.2σ

Main systematics

 jet energy resolution, modelling, b-tagging

PLB 756 (2016) 228 17/22

Summary single top production

good agreement with NLO calculations

erc

• from $\sigma_{\text{meas.}}/\sigma_{\text{theo.}} = |f_{LV} \cdot V_{tb}|^2 \rightarrow \text{can extract } |V_{tb}| \text{ with } 5\% \text{ uncertainty}$

M. Cristinziani Top quark production PANIC 2017 北京 01-Sep-2017]

UNIVERSITAT

Wtb vertex: triple differential decay rate

Normalised triple-differential (9,9^{*}, φ ^{*}) decay rate of top quarks • complete description of anomalous couplings in Wtb + top polarisation

- relate to helicity amplitudes in $t \rightarrow Wb$

$\frac{1}{N}\frac{\mathrm{d}^{3}N}{\mathrm{d}(\cos\theta)\mathrm{d}\Omega^{*}} = \sum_{k=0}^{1}\sum_{l=0}^{2}\sum_{m=-k}^{k}a_{k,l,m}\sqrt{2\pi}Y_{k}^{m}(\theta,0)Y_{l}^{m}(\theta^{*},\phi^{*}).$ 9 $\mathcal{A}_{k,l,m} = \mathbf{0}$, parameterised by

- 3 amplitude fractions f_1, f_1^+, f_0^+
- 2 phases δ_{-} : can imply CP violation, δ_{+} not observable
- a nuisance parameter

erc

Strategy and results

- global fit with all correlations
- extraction of limits on anomalous couplings
- no assumptions on values of the other couplings

Wtb vertex: triple differential decay rate

Normalised triple-differential $(9,9^*,\varphi^*)$ decay rate of top quarks

• no assumptions on values of the other couplings

erc

[M. Cristinziani | Top quark production | PANIC 2017 | 北京 | 01–Sep–2017]

Associated single top production: tZq

Motivation

- electroweak process, not yet observed (800 fb)
- sensitive to tZ and WWZ coupling
- first step on the way to measure tH

Analysis outline

- SR: 3 leptons (m_{ll} ~ m_z), 1 central b-tag + 1 jet
- 10 variables used as input to NN to enhance S/B
- background under control with validation regions

ATLAS-CONF-2017-052

tZq results

Dominant systematic uncertainty

 tZq radiation: hard scatter and parton shower scales

Fit setup

erc

- binned ML fit to full NN distribution in SR
- tt and diboson normalisation from CRs
- Z+jets data-assisted MC correction

Results

- $\sigma_{tZq} = 600 \pm 170_{stat} \pm 140_{syst} \, fb$
- expected significance 5.4σ
- observed significance 4.2σ

иемт [M. Cristinziani | Top quark production | PANIC 2017 | 北京 | 01–Sep–2017]

UNIVERSITÄT

ATLAS-CONF-2017-052 21/22

Summary

Millions of top-quarks produced at LHC • comprehensive program at ATLAS to measure $t\bar{t}$ and single top production

Top-quark pairs

- Inclusive cross-section compared to NNLO calculations
- differential cross-section helps MC tuning, to extract gluon PDF, ...

Single top

- all three channels now seen
- t-channel differential distribution allows also to probe Wtb structure
- first evidence of tZq process shown

