A study of d*(2380)

----a chiral quark model

Yubing Dong (董宇兵)

Institute of High Energy Physics, Chinese Academy of Sciences

Collaborators: Pengnian Shen, Fei Huang, Zongye Zhang

2017.09.01-05, Beijing for PANIC2017

Content

- I. Observation of d*(2380)
- **II**, Possible interpretations
- III、Compact 6-quark dominanted d* structure
 in chiral constituent quark model
 - (A) Mass and wave function
 - (B) Strong decays
 - (C) Charge distribution
- $\mathrm{IV}_{\scriptscriptstyle \mathrm{V}}$ Summary and remarks

I. Observation of d*(2380)

cerncourier.com/cws/article/cern /57836 (2014)

VOLUME 54 NUMBER 6 JULY/AUGUST 2014

Experiments at the <u>Julich</u> Cooler Synchrotron (COSY) have found compelling evidence for a new state in the two-baryon system, with a mass of 2330 MeV, width of <u>80 MeV</u> and ouantum numbers [*If*²] = 0(3⁺). The structure, containing six valence quarks, constitutes a <u>dibaryon</u>, and could be either an exotic compact particle or a <u>hadronic</u> molecule. The result answers of a long-standing question of whether there are more <u>eigenstates</u> in the wo-baryon system of private deuteron ground-state. This fundamental question has been awaiting an answers one at least 1964, when first Freeman Dyson and later tobert Jaffe envisaged the possible statence of non-

Experiments at the Jülich Cooler Synchrotron (COSY) have found compelling evidence for a new state in the two-baryon system, with a mass of 2380 MeV, width of 80 MeV and quantum numbers $I(J^P) = O(3^+)$...Since 2009

Signals in np procesess @ COSY

2π production processes

Signals in other reactions @ COSY

fusion 2π processes

Measured also in fusion reactions to helium isotopes: $p + d \longrightarrow {}^{3}He + \pi^{0} + \pi^{0}$ $p + d \longrightarrow {}^{3}He + \pi^{+} + \pi^{-}$

 $d + d \longrightarrow {}^{4}He + \pi^{0} + \pi^{0}$

 $d + d \longrightarrow {}^{4}He + \pi^{+} + \pi^{-}$

Character of d*

• d* mass locates between $\Delta\Delta$ and $\Delta N\pi$ thresholds Effect from threshold is expected small

 d* narrow width —> Possible 6q structure might be different from normal hadrons

Review article: by Heinz Clement,

Progress in Particle and Nuclear Physics,

93 (2017), 195-142

8

II, Possible

interpretations

Before COSY's observation

• Prediction consists with COSY's measurement

Dyson(64) ----- symmetry analysis Thomas(83) ----- bag model Yuan(99) ----- ΔΔ+CC quark cluster model

- Other predictions
 - Jaffe(77) Swart(78)
 - Oka(80)
 - Maltman(85)
 - Goldman(89)
 - Wang(95)...

After COSY's observation

• Quark model

J.Ping (09,14) ------10 coupled channel quark cluster model F.Huang, Y.B.Dong (14,15)----- $\Delta\Delta+CC$ quark cluster model Bashkanov, Brodsky, H.Clement (13) -- $\Delta\Delta+CC$ argument S.L.Zhu (15) -----QCD Sum Rule

• Hadronic model

Gal (14) ----- $\Delta N\pi$ model Kukulin(15,16) --- $D_{12}\pi$ model

- A. Compact 6q dominated exotic state
 - (a) In 1999, proposed d* with $\Delta\Delta+CC$ structure

X.Q.Yuan, Z.Y.Zhang, Y.W.Yu, P.N.Shen, PRC 60 (1999) 045203

- d* binding energy: 40-80 MeV
- CC enhances binding energy by 20 MeV

(b) In 2013, proposed narrow d* width due to Harvey formula $|\Psi_{d^*}\rangle = \sqrt{\frac{1}{5}}|\Delta\Delta\rangle + \sqrt{\frac{4}{5}}|6Q\rangle$

Bashkanov, Brodsky, H.Clement, Phys.Lett.B727 (2013)438

(c) In 2014, gave CC fraction of 68% in $d^{(\Delta\Delta+CC)}$

F.Huang, Z.Y.Zhang, P.N.Shen, W.L.Wang, CPC 39 (2015) 071001

B. $\Delta N\pi$ (or $D_{12}\pi$) resonant state

A. Gal et al. NPA <u>928</u> (2014) 73

V. Kukulin et al. PRC87(2013) 025202, NPA 946 (2016) 117

III、Compact 6q dominated d* in chiral constituent quark model

(A) Mass and wave function SU(3) chiral QM + RGM approach ▲ Interaction: q-q potential $V_{ij} = V_{ij}^{conf} + V_{ij}^{OGE} + V_{ij}^{ch} + V_{ij}^{chv}$ $\mathbf{V_{ii}^{ch}} = \sum (\mathbf{V_{ii}^{s(a)}} + \mathbf{V_{ij}^{ps(a)}})$ **Interactive Lagrangian** $\mathcal{L}_I = -g_{ch}\bar{\Psi}(\sum \sigma_a \lambda_a + i \sum \pi_a \lambda_a \gamma_5)\Psi$ a=0Model parameters: reproduce experimental data for NN systems---NN phase shifts, $\mathrm{BE}_{d}^{exp't} = 2.22\,\mathrm{MeV}$

9/3/2017

▲ Trial wavefunction: $I(J^{P}) = 0(3^{+})$

$$\Psi_{6q} = \mathcal{A} \left[\phi_{\Delta}(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}) \phi_{\Delta}(\boldsymbol{\xi}_{4}, \boldsymbol{\xi}_{5}) \eta_{\Delta\Delta}(\boldsymbol{r}) + \phi_{C}(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}) \phi_{C}(\boldsymbol{\xi}_{4}, \boldsymbol{\xi}_{5}) \eta_{CC}(\boldsymbol{r}) \right]_{S=3, I=0, C=(00)}.$$

 $\Delta: \quad (0s)^3 [3]_{\text{orb}}, S = 3/2, I = 3/2, C = (00),$ $C: \quad (0s)^3 [3]_{\text{orb}}, S = 3/2, I = 1/2, C = (11),$

 $n_{\Delta\Delta}$ and n_{cc} are not orthogonal

A Hadronization --- Channel wave function:

Using the projection method to integrate out the internal coordinates inside the clusters (or Hadronization)

$$\begin{split} \Psi_{d^*} &= |\Delta\Delta\rangle \,\chi_{\Delta\Delta}(r) + |\mathrm{CC}\rangle \,\chi_{\mathrm{CC}}(r) \\ \chi_{\Delta\Delta}(r) &\equiv \langle \phi_{\Delta}(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) \,\phi_{\Delta}(\boldsymbol{\xi}_4, \boldsymbol{\xi}_5) \,|\, \Psi_{6q}\rangle \,, \\ \chi_{\mathrm{CC}}(r) &\equiv \langle \phi_{\mathrm{C}}(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) \,\phi_{\mathrm{C}}(\boldsymbol{\xi}_4, \boldsymbol{\xi}_5) \,|\, \Psi_{6q}\rangle \,, \end{split}$$

The two components are orthogonal due to the quark exchange effect

• Wave function

9/3/2017

• Binding energy

 $\mathbf{BE_{d^*}^{th}} = \mathbf{84MeV}$

 $BE_{d^*}^{\mathbf{exp't}} = 84 MeV$

		Ext. SU(3) (f/g=0)		
		ΔΔ (L=0,2)	∆∆-CC (L=0,2)	
d [*] Binding Energy(MeV)		62.3	83.9	
Exaction	ΔΔ (L=0)	98.01	31.22	
of Wave	ΔΔ (L=2)	1.99	0.45	
Function (%)	CC (L=0)	0	68.33	
	CC (L=2)	0	0.00	

Reason for the large component of CC (68%)

 $\mathbf{I}(\mathbf{J}^{\mathbf{P}}) = \mathbf{0}(\mathbf{3}^+)$

- 1). Intrinsic character of d* ----- <P₃₆^{sfc} > quark exchange effect of sfc large (negative:-4/9)
 - 2). Dynamical effect----(SI=30), OGE and vector meson exchange induced Δ - Δ short range interaction is attractive

Two cluster closer is large CC component
 d* deep bound and narrow width
 d* might be a 6q dominant state!

 $P_{36} = P_{36}^r P_{36}^{sh}$

(B) Strong decays

2π production processes

9/3/2017

Three-body decay

Four-body decay

$$\Gamma_{d^{\bullet} \to d\pi^{0}\pi^{0}} = \frac{1}{2!} \int d^{3}k_{1} d^{3}k_{2} d^{3}p_{d}(2\pi) \delta^{3}(\vec{k}_{1} + \vec{k}_{2} + \vec{p}_{d})$$
$$\times \delta(\omega_{k_{1}} + \omega_{k_{2}} + E_{p_{d}} - M_{d^{\bullet}}) |\overline{\mathcal{M}}_{if}^{\pi^{0}\pi^{0}}|^{2}$$

$$\mathcal{M}_{if}^{\pi^{0}\pi^{0}} = \frac{1}{\sqrt{3}} \sum_{i} F_{1}F_{2}k_{1,\mu}k_{2,\nu}I_{S}^{0}I_{I}^{0}C_{1\nu,1\mu}^{jm_{j}}C_{3m_{d^{*}},jm_{j}}^{1m_{d}}$$

$$\times \int d^{3}q \left[\frac{\chi_{d}^{*}\left(\vec{q} - \frac{1}{2}\vec{k}_{12}\right)}{E_{\Delta}(q) - E_{N}(q - k_{1}) - \omega_{1}} + \frac{\chi_{d}^{*}\left(\vec{q} + \frac{1}{2}\vec{k}_{12}\right)}{E_{\Delta}(q) - E_{N}(q - k_{2}) - \omega_{2}} + \frac{\chi_{d}^{*}\left(\vec{q} + \frac{1}{2}\vec{k}_{12}\right)}{E_{\Delta}(-q) - E_{N}(-q - k_{1}) - \omega_{1}} + \frac{\chi_{d}^{*}\left(\vec{q} - \frac{1}{2}\vec{k}_{12}\right)}{E_{\Delta}(-q) - E_{N}(-q - k_{1}) - \omega_{1}} \right] \chi_{d^{*}}(\vec{q})$$

$$\Gamma_{d^{\bullet} \to pn\pi^{0}\pi^{0}} = \frac{1}{2!2!} \int d^{3}k_{1} d^{3}k_{2} d^{3}p_{1}(2\pi)\delta(\Delta E) \\ \times |\overline{\mathcal{M}(k_{1},k_{2};p_{1})}|^{2}$$

$$\mathcal{M}(k_1, k_2; p_1) = \mathcal{M}^{\text{bare}}(k_1, k_2; p_1) \times \mathcal{T} \Leftrightarrow \text{FSI}$$

$$\mathcal{I} = \mathcal{J}^{-1}(k) = C(k^2) \frac{\sin \delta e^{i\delta}}{k}$$

$$\mathcal{M}^a(k_1, k_2; p_1) = \int d^3 p_2 d^3 q [\mathcal{HS}_f \mathcal{H}] \Psi_{d^*}(q)$$

$$\times \delta^3(\vec{p}_1 + \vec{k}_1 - \vec{q}) \delta(\vec{p}_2 + \vec{k}_2 + \vec{q})$$

$$= \int d^3 p_2 \delta^3(\vec{p}_1 + \vec{p}_2 + \vec{k}_1 + \vec{k}_2) [\mathcal{HS}_f \mathcal{H}]$$

$$\times \Psi_{d^*}(-\vec{p}_2 - \vec{k}_2)$$

22

 $d^* \to np\pi^0\pi^0 \ (np\pi^+\pi^-)$

9/3/2017

	Theor.(MeV)	Expt.(MeV)
$d^* \to d\pi^+\pi^-$	16.8	16.7
$d^* \to d\pi^0 \pi^0$	9.2	10.2
$d^* \to pn\pi^+\pi^-$	20.6	21.8
$d^* \to p n \pi^0 \pi^0$	9.6	8.7
$d^* \to p p \pi^0 \pi^-$	3.5	4.4
$d^* \to nn\pi^0\pi^+$	3.5	4.4
$d^* \to pn$	8.7	8.7
Total	71.9	74.9

* Too large width for ($\Delta\Delta$) component only

$M_{d*}(\text{MeV})$	(100%)∆∆ 2374	Expt 2375	
Decay channel	$\Gamma(MeV)$	Γ(MeV)	
$d^* \rightarrow d\pi^0 \pi^0$	17.0	10.2	
$d^* \rightarrow d\pi^+\pi^-$	30.8	16.7	
Total	132.8	74.9	

Discussions:

- * FSI is about 26~30%
- * Isospin breaking factor

$$\frac{\Gamma(d^* \to d\pi^+ \pi^-)}{\Gamma(d^* \to d\pi^0 \pi^0)} \sim 1.8 \quad (1.6, 2.0)$$

$$\frac{\Gamma(d^* \to pn\pi^+\pi^-)}{\Gamma(d^* \to pn\pi^0\pi^0)} \sim 2.2 \quad (2.5, 2.5)$$

* All partial and total widths agree with data $\Gamma^{exp't} = 70 \sim 75 \, MeV$

$$\Gamma^{th} \approx 72 \, MeV$$

The narrow width is due to large CC component

• Experimental status

The WASA-@-COSY Collaborations, arXiv:1702.07212v1 [nucl-ex]

$$\sigma_{NN \to NN\pi} (I = 0) = 3(2\sigma_{np \to pp\pi^-} - \sigma_{pp \to pp\pi^0})$$

This channel might serve as a test for different interpretations, since the result of the $\Delta \pi N$ (or $D_{12}\pi$) is about 18%.

• Theoretical status

compact 6q dominated case

Typical diagrams: pion emitted from cluster II

Fig. 1. Six possible ways to emit pion only from the $\Delta\Delta$ component of d^* in the $d^* \rightarrow NN\pi$ decay process. The outgoing pion with momenta \vec{k} is emitted from Δ_2 . The other six sub-diagrams with pion emitted from Δ_1 are similar, and then are not shown here for reducing the size of the figure. 9/3/2017

$$C: (0s)^3 [3]_{\text{orb}}, S = 3/2, I = 1/2, C = (11),$$

 $L = L_{\pi NN} + L_{\Delta N\pi}$ Intermediate states: (N, N^{*}, Δ , Δ ^{*}) Low-lying resonances are considered

From quark model
$$\frac{g_{\pi\Delta\Delta}^2}{4\pi} = \frac{1}{25} \frac{M_{\Delta}^2}{M_N^2} \frac{g_{\pi NN}^2}{4\pi}, g_{\pi\Delta\Delta}$$
 small

1, $C \rightarrow \Delta$, interaction should be color and isospin-dependent

2, $CC(SI=3,0) \rightarrow NN^{(1400)}$, D-wave of OGE is required

The suppressions enable to ignore the contribution from the CC component in d*

Our prediction of 1% is compatible with the exp't upper-limits

(C) Charge distribution of d*(2380)

Dong, Huang, Shen, Zhang, arXiv:1704.01253v1 [nucl-th]

For a spin=3 system:

 $J^{0} = 1$

2S+1=7 form factors (related to the size of system)

d*(2380)						
Cases	A1	A2				
rms (fm)	1.09	0.72				

9/3/2017

rms

IV. Summary and Remarks

9/3/2017

Our understanding: • d*: Hexaguark dominated state (CC component ~ 66-68% in $\Delta\Delta$ +CC) $M \approx 2380 \text{ MeV}$ $\Gamma \approx 72 \text{ MeV}$ ($M^{e\times p'\dagger} \approx 2380 \text{ MeV}$ $\Gamma^{e\times p'\dagger} \approx 70-75 \text{ MeV}$)

if $\Gamma_{<} = 44$ MeV, $\alpha = \frac{5}{7}$

BR can be 9%

Suggest other experimental searches

- $\gamma + d$ Process (Mainz, Jlab.)
- $\Upsilon \to \overline{d}^* + X$ Process (Belle)
 - [BR($\Upsilon \to \overline{d} + X$) ~ 2.86 X 10⁻⁵]
- $e^+ + e^- \rightarrow \bar{d}^* + p + n$ Process (BES,Belle?)

If the d^{*} is further confirmed by experiments, we believe that our interpretation is reasonable. Thus, it is a state with 6q structure dominant and moreover, the more information about the short range interaction is expected.

Thanks !

BACKUP SLICES

Analysis: Large component of CC (67%) in d* ?

$$\begin{array}{c} (1) \quad (2) \\ \Psi_{6q} = (1 - 9 P_{36}) [\phi_{\Delta} \phi_{\Delta} \eta_{\Delta\Delta}(\mathbf{r})]_{\mathrm{SIC}=30(00)} \\ + (1 - 9 P_{36}) [\phi_{\mathrm{C}} \phi_{\mathrm{C}} \eta_{\mathrm{CC}}(\mathbf{r})]_{\mathrm{SIC}=30(00)} \\ & & & & \\ (3) \quad (4) \\ \chi_{\Delta\Delta}(r) \equiv \langle \phi_{\Delta}(\xi_{1}, \xi_{2}) \phi_{\Delta}(\xi_{4}, \xi_{5}) \mid \Psi_{6q} \rangle, \quad (1) \quad (2) \quad (4) \text{ terms} \\ \chi_{\mathrm{CC}}(r) \equiv \langle \phi_{\mathrm{C}}(\xi_{1}, \xi_{2}) \phi_{\mathrm{C}}(\xi_{4}, \xi_{5}) \mid \Psi_{6q} \rangle, \quad (3) \quad (4) \quad (2) \text{ terms} \\ \Psi_{d^{*}} = |\Delta\Delta\rangle \chi_{\Delta\Delta}(r) + |\mathrm{CC}\rangle \chi_{\mathrm{CC}}(r) \\ \hline \end{array}$$

Thus P_{36} Exchange is important!

d^{*} has $\Delta\Delta$ and CC components

• $\Delta\Delta$ +coupled channels (in quark level)

J.L.Ping, F.Wang et al. PRC <u>89</u>, 034001 (2014)

$LJ^{p} = 03^{+} = 0$

QDCSM (4 coupled channels) $\Delta\Delta^7 S_3$, NN³D₃, $\Delta\Delta^3 D_3$, $\Delta\Delta^7 D_3$ BE= 107 MeV Γ = 110 MeV

TABLE III. $\Delta\Delta$ or resonance mass *M* and decay width Γ , in MeV, in two quark models for the $IJ^P = 03^+$ state.

	QDCSM			ChQM	
	SC	4 cc	sc	4 cc	10 cc
М	2365	2357	2425	2413	2393
Γ_{NN}	_	14	_	14	14
Γinel	103	96	177	161	136
Г	103	110 👹	177	175	150

9/3/2017

Before the discovery of d*

• A pioneer discussion from symmetry: J.Dyson, PRL 13, 815 (1964)

Two baryon systemsAnti-symmetricrepresentations:SU(6) classification :Non-strange states

(I, J) = (3,0)(2,1)(1,0)(1,2)(0,1)(0,3) 6 states

Casmir operator reduced

a mass formula

$$M = A + B' (T(T+1)) + B'' (J(J+1))$$

If B' = B'' = B, the obtained deuteron mass 1876MeV, and then, obtain A,

Choose B = 50MeV, Then, M_{d*} = 2376MeV

$b_{\mathbf{u}}, m_{\sigma}$ are determined by fitting experimental data for NN systems

	SU(3)		Ext. SU(3) (f/g=0)	Ext. SU(3) (f/g=2/3)	
Deuteron Binding energy(MeV)		2.09	2.24	2.20	
Fraction of WaveNN (L=0)Function (%)NN (L=2)	93.68	94.66	94.71		
	NN (L=2)	6.32	5.34	5.29	

If in the $\Delta N\pi$ (or $D_{12}\pi$) only case Branching ratio for $d^*(2380) \rightarrow NN\pi$ is 18%

If in the mixing case $\alpha \Gamma_{<} + (1 - \alpha)\Gamma_{>} = \Gamma_{NN\pi\pi}^{d^{*}}$ taking $\Gamma_{>} = 100 \text{ MeV}$ $\Gamma_{NN\pi\pi}^{d^{*}} = 60 \text{ MeV}$ if $\Gamma_{<} = 44 \text{ MeV}$, $\alpha = \frac{5}{7}$ Branching ratio for $d^{*}(2380) \rightarrow NN\pi$ is 9%

(A)Compact quark model

system

(B) N three-body

d*(2380) Charge distribution

• Binding energy

 $BE_{\mathbf{d}^*}^{\mathbf{th}} = 84 MeV$

 $\mathrm{BE}_{\mathbf{d}^*}^{\mathbf{exp't}} = 84\mathrm{MeV}$

		SU(3)		Ext. SU(3) (f/g=0)		Ext. SU(3) (f/g=2/3)	
		ΔΔ (L=0,2)	∆∆-CC (L=0,2)	ΔΔ (L=0,2)	∆∆-CC (L=0,2)	ΔΔ (L=0,2)	∆∆-CC (L=0,2)
d [*] Binding Energy(MeV)		28.9	47.9	62.3	83.9	47.9	70.3
Fraction of Wave Function (%)	ΔΔ (L=D)	97.18	33.11	98.01	31.22	97.71	32.51
	ΔΔ (L=2)	2.82	0.62	1.99	0.45	2.29	0.51
	CC (L=0)	0	66.25	0	68.33	0	66.98
	CC (L=2)	0	0.02	0	0.00	0	0.00

9/3/2017

