

Experimental overview

Results from Babar, Belle, LHCb, ATLAS and CMS

Processes at many different energy scales

Example of SM terms

i = 10

• Described by an effective Hamiltonian - O_i (Operators): long-distance, non-perturbative physics - C_i (Wilson coefficients): short distance, high energy physics • BSM processes may modify these coefficients $H_{eff} = -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \sum_{i} [C_i(\mu)O_i(\mu) + C'_i(\mu)O'_i(\mu)]$ $I_{eff handed}$ $I_{ight handed}$

- (Differential) branching ratios
 - q² dependence for b \rightarrow s l⁺ l⁻
 - E.g. $B^0 \rightarrow K^* \mu^+ \mu^-$
- Angular distributions
 - $b \rightarrow s I^+ I^- decays$
- Effective lifetime
 - B_s decays where $\Delta\Gamma_s \neq 0$
 - Measure of CP violation
- BSM processes can modify the effective Hamiltonian by
 - Modifying Wilson coefficients of operators present in SM
 - Making Wilson coefficients dependent on lepton flavour
 - Introducing new operators

- Fully leptonic decays
 - $B_{(s)} \rightarrow \mu^+ \mu^- \& B_{(s)} \rightarrow \tau^+ \tau^-$
- Electroweak $b \rightarrow s l^+ l^-$ transitions
 - $B^0 \rightarrow K^* \mu^+ \mu^-$ and friends
 - Differential branching ratios & angular analysis
 - Global fits to Wilson coefficients
- Lepton flavour universality test ($I^+ = e^+$, μ^+ or τ^+)
 - $B \rightarrow K^{(*)} I^+ I^-$ decay rates
 - B \rightarrow D(*) I+ ν decay rates
- Outlook

Fully leptonic final states

 $B_{(s)} \rightarrow \mu^+ \mu^-$ and friends

- Very precise predictions available
 - Only C₁₀ contribute in the SM: $BR(B_q \rightarrow l^+l^-) \propto m_l^2 \left[1 \frac{4m_l^2}{m_{B_q}^2}|C_{10}|^2\right]$

 $\overline{\text{BR}}(B_s \to \mu^+ \mu^-)_{\text{SM}} = (3.52 \pm 0.15) \times 10^{-9}, \qquad \text{BR}(B^0 \to \mu^+ \mu^-)_{\text{SM}} = (1.12 \pm 0.12) \times 10^{-10}$

- BSM scalar & pseudo-scalar operators may contribute
 - Change in decay rate
 - Mixing induced CP violation
- LHCb & CMS: Run 1 dataset
 - Observation of $B_s \rightarrow \mu^+ \mu^-$ (6.2 σ)
 - Evidence for $B^0 \rightarrow \mu^+ \mu^-$ (3.0 σ)

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.0^{+1.6}_{-1.4}) \times 10^{-10}$$

$B_{(s)} \rightarrow \mu^+ \mu^-$ branching ratio

- ATLAS: 25 fb⁻¹ run I
 - First ATLAS result on $B_{(s)} \rightarrow \mu^+\mu^ \mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$ Significance: 1.4 σ (3.0 expected from SM) $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 4.2 \times 10^{-10}$ (95 % CL)
- LHCb 3+1.4 fb⁻¹ run I+II
 - First single experiment observation
 - 7.9 σ significance $B_s \rightarrow \mu^+\mu^ \mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$ $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 3.4 \times 10^{-10}$
 - Effective lifetime of $B_s \rightarrow \mu^+\mu^ \tau(B_s^0 \rightarrow \mu^+\mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$

- LHCb 3 fb⁻¹ run 1 PRL 118, 251802 (2017)
 - Larger branching ratio due to the larger mass
 - Additional enhancement possible in BSM scenarios that violate LFU

 $\overline{\mathrm{BR}}(B_s \to \tau^+ \tau^-)_{\mathrm{SM}} = (7.46 \pm 0.30) \times 10^{-7}, \qquad \mathrm{BR}(B^0 \to \tau^+ \tau^-)_{\mathrm{SM}} = (2.35 \pm 0.24) \times 10^{-8}$

- Experimentally challenging: multiple neutrinos in the final state
 - Reconstructed in the mode $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$
 - Normalisation $B_s \rightarrow D^- (\rightarrow K^+ \pi^- \pi^-) D_s (\rightarrow K^- K^+ \pi^+)$

 $\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} \text{ at } 95\% \text{ CL}$ $\mathcal{B}(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3} \text{ at } 95\% \text{ CL}$

Electroweak b \rightarrow s I⁺ I⁻ transitions

 $B^0 \rightarrow K^* \mu^+ \mu^-$ and friends

$b \rightarrow s \; l^{\scriptscriptstyle +} \; l^{\scriptscriptstyle -}$ differential branching ratios

• LHCb: differential branching fractions in several b \rightarrow s I^+ I^- modes

- Versus di-muon invariant mass squared: q²

• Discrepancy in the low di-muon invariant mass region

¹ September 2017

$b \rightarrow s \; l^{\scriptscriptstyle +} \; l^{\scriptscriptstyle -}$ differential branching ratios

- CMS: 20.5 fb⁻¹ run | Phys. Lett. B 753 (2016) 424
 - $B^0 \rightarrow K^* \mu^+ \mu^-$ differential branching ratio
 - Compatible with SM & LHCb results

$b \rightarrow s l^+ l^-$ angular observables

- Angles defined in B meson rest frame
 - Angular variables: θ_{μ} , θ_{K} & Φ
 - Di-lepton invariant mass²: q²
 - Fit PDF for $B^0 \rightarrow K^* \mu^+ \mu^-$

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \bigg[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K \\ + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_l \\ - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ + \frac{4}{3} A_\mathrm{FB} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \bigg]$$

- Form-factor uncertainties in the predictions of observables
 - Alternative set of 7 observables with reduced uncertainties: $P_i^{(\prime)}$

For instance:

$$P_5' = \frac{S_5}{\sqrt{F_L(1-F_L)}}$$

$B \to K^* \; \mu^+ \; \mu^-$ angular analysis

- LHCb: 3 fb⁻¹ run I data set
 - Full angular analysis $B \to K^* \: \mu^+ \: \mu^-$
 - Local SM deviation P₅'
 - $2.8\sigma \text{ in } 4 < q^2 < 6 \text{ GeV}^2/c^4$
 - $3.0\sigma \text{ in } 6 < q^2 < 8 \text{ GeV}^2/c^4$
 - Fit to C₉ 3.4 σ from SM
- Belle: 711 fb⁻¹ full data set
 - Both e^{\pm} and μ^{\pm} modes
 - Local SM deviation P_5 '
 - 2.6 σ in 4 < q² < 8 GeV²/c⁴ in the muon mode
 - e^{\pm} mode consistent with SM

$B \to K^* \; \mu^+ \; \mu^-$ angular analysis

• ATLAS: 20.3 fb⁻¹ run I data ATLAS-CONF-2017-023

12

14

- CMS: 20.5 fb⁻¹ run 1 data
 CMS PAS BPH-15-008
 - Recent, preliminary result
 - Compatible with SM
 - Compatible with LHCb & Belle

-1.5^L0

2

4

6

8

10

18

 q^2 (GeV²)

16

20

Global fits to Wilson coefficients

- Is there a pattern in these deviations?
- Global fits of Wilson coefficients
 - Approximately 100 observables
 - $B_{(s)} \rightarrow \mu^+ \mu^-$ and $b \rightarrow s \gamma BR$
 - $b \rightarrow s \mid l^+ \mid BR$ & angular observables
 - Several global fits in literature
 - Fits prefer BSM contribution to C9
 - $3-5\sigma$ from SM depending on constraints
- Possible interpretations
 - BSM physics contributions
 - e.g. Z' of a few TeV
 - Limits in our understanding of QCD
 - E.g. contributions from charm loops

 $B \rightarrow K^{*} \ \tau^{+} \ \tau^{-} not$ yet observed Babar limit BR < 2.3 x 10^{-3} PRL 118, 031802 (2017)

1 September 2017

Lepton flavour universality

Ratios of branching ratios – comparing lepton flavour

$$\mathcal{R}_{K^{(*)}} \equiv \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)} \qquad \mathcal{R}_{D^*}^{\mathrm{SM}} = \frac{\mathcal{B}(\overline{B} \to D^* \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\overline{B} \to D^* e^- \overline{\nu}_{e})}$$

See talk by **Anna Lupato:** "Lepton flavour universality tests at LHCb" Sunday 15:40 in 'Test of symmetries and conservation laws'

- Lepton flavour universality test
 - Close to unity in SM

$$R_{K^{(*)}} = \frac{\mathcal{B}(B^{0/+} \to K^{0/+(*)}\mu^+\mu^-)}{\mathcal{B}(B^{0/+} \to K^{0/+(*)}e^+e^-)}$$

- Measurements by Belle & Babar
 - Combines B⁰ & B⁺ ratios
 - R(K) and R(K*) for different q^2 ranges
 - Consistent with SM prediction
- LHCb 3 fb⁻¹ run I: R_{K} PRL 113 (2014)151601 - Measured as a double ratio $R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi \ (\to \mu^{+}\mu^{-}))} / \frac{\mathcal{B}(B^{+} \to K^{+}J/\psi \ (\to e^{+}e^{-}))}{\mathcal{B}(B^{+} \to K^{+}e^{+}e^{-})}$ $R_{K} = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})$
 - 2.6 σ deviation from SM

Babar: PRD 86 (2012) 032012 Belle: PRL 103 (2009) 171801

1 September 2017

- LHCb: 3 fb⁻¹ run I: R_{K*}
 - Tension with SM
 - 2.1-2.3σ in 0.045 < q² < 1.1 GeV²/c⁴
 - $2.2-2.4\sigma$ in $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$

$$R_{K^*} = \frac{\mathcal{B}(B^0 \to K^{0*} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{0*} e^+ e^-)}$$

- Fit to Wilson coefficients
 - Allowing for $C_{ie}^{NP} \neq C_{i\mu}^{NP}$
 - 3.5σ from SM
 - Preference for $C_{9\mu}^{NP} \neq 0$

- LFU ratios for semi-leptonic D^(*) decays
- R_D measurements
 - Belle & Babar
 - Hadronic tag, $\tau^- \rightarrow l^- \bar{\nu}_l v_\tau$
- R_{D*} measurements
 - Belle & Babar
 - Hadronic tag, $\tau^- \rightarrow l^- \bar{\nu}_l v_\tau$
 - Belle
 - Hadronic tag, $\tau^- \rightarrow \pi^- v_\tau$, $\tau^- \rightarrow \rho^- v_\tau$
 - Semi-leptonic tag, $\tau^- \rightarrow l^- \bar{\nu}_l v_\tau$
 - LHCb 3 fb⁻¹ (run I)
 - $\tau^- \rightarrow l^- \bar{\nu}_l v_\tau$
 - $\tau^- \rightarrow \pi^- \pi^+ \pi^- v_\tau$

$$R_{D^{(*)}} = \frac{\mathcal{B}(B^{0/-} \to D^{0/-(*)}\tau^+\nu_{\tau})}{\mathcal{B}(B^{0/-} \to D^{0/-(*)}l^+\nu_{l})}$$

- 2.3 σ in R_D
- 3.4σ in R_{D*}
- 4.10 combined

- Example of BSM model that would influence $R_{D^{(*)}}$
 - 2-Higgs-dublet model Type II
 - Parametrised by $\tan(\beta)/m_{H^+}$
 - Affects both measured and predicted $R_{D^{(*)}}$

Comparison with Belle hadronic result

Outlook

Many exciting results in the years to come

1 September 2017

- LHCb results almost exclusively from 3 fb⁻¹ Run I data
 - Run II doubles signal yield/fb⁻¹
 - Increased $b\bar{b}$ cross section

			CERN-LH	ICC-2017-003
	LHC	Period of	Maximum \mathcal{L}	Cumulative
	Run	data taking	$[{\rm cm}^{-2}{\rm s}^{-1}]$	$\int \mathcal{L} dt \; [\mathrm{fb}^{-1}]$
Current detector	1 & 2	$2010 – 2012, \ 2015 – 2018$	4×10^{32}	8
Phase-I Upgrade	3 & 4	$2021 – 2023, \ 2026 – 2029$	$2 imes 10^{33}$	50
Phase-II Upgrade	$5 \rightarrow$	2031–2033, 2035 \rightarrow	2×10^{34}	300

- LHCb Phase-I upgrade
 - Remove H/W trigger 40 Mhz readout
 - Doubles signal yield/fb⁻¹ for hadronic channels
 - Construction progressing at full speed
- LHCb Phase-II upgrade
 - Preliminary studies ongoing
 - Major detector upgrade
 - Eol submitted

- Babar & Belle datasets
 - 550 + 1000 fb⁻¹
- Belle II: 50 ab⁻¹
 - Physics data taking from 2018
 - See previous speaker (Mikihiko Nakao)
 - Dedicated talk by Jake Bennet
 - Sunday, 14:50 (accelerators & detectors)
- ATLAS & CMS: results from 20-25 fb⁻¹
 - $\sim 80 \text{ fb}^{-1}$ on tape
 - Expect ~300 fb⁻¹ by 2023
 - 3 ab⁻¹ for sLHC upgrade era
 - Many important results are expected

SuperKEKB luminosity projection

Month in Year

		arXiv:1002.5012 and EPS-HEP 2017 talk by S. Falke		
• Belle II: R _D & R _{D*}		Current precision	Belle II 5 ab ⁻¹	Belle II 50 ab ⁻¹
$\sigma_{Bellell} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) rac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{irred}^2}$	R_D	12%	5.6%	3.2%
	R_{D^*}	5.4%	3.9%	2.2%
	R_{K}	12%	7%	2%

• LHCb Phase I & II

CERN-LHCC-2017-003
CERN-LHCC-2012-007

$B_{(s)} \rightarrow \mu^+ \mu^-$	Current precision	Phase-I 50 fb ⁻¹	Phase-II 300 fb ⁻¹
σ _{BR} x10 ⁻⁹	0.7	0.15	0.07
Effective lifetime σ_{τ}	25%	5%	2%

ATLAS & CMS are competitive in $B_{(s)} \rightarrow \mu^+ \mu^-$

- Rare B-decays are an excellent probe for BSM physics
- $B_{(s)} \rightarrow \mu^+ \mu^-$ branching ratios consistent with SM
 - Within experimental precision
- Intriguing deviations from SM predictions
 - b \rightarrow s I⁺ I⁻ branching ratios & angular observables
 - Lepton flavour universality test: $R_{K^{(*)}}$ and $R_{D^{(*)}}$
- Exciting results expected from
 - Data already recorded
 - Upgraded detectors

Backup slides

- LHCb update: 3 fb⁻¹ (run I) + 1.4 fb⁻¹ (run 2)
- New observable sensitive to CP violation

- $A_{\Delta\Gamma} = 1$ in SM (i.e. no CPV) $\tau_{eff} = \tau_{B_H} = 1.619 \pm 0.009$

De Bruyn et al., PRL 109, 041801 (2012)

- LHCb: 3 fb-1 run I
 - Particular interest in the low q² region
 - Sensitivity to photon polarisation
 - Wilson coefficients C₇ & C₇'
 - Folded angular distributions
 - Increase sensitivity for low yields
 - 4 observables

 $\begin{array}{rcl} \underline{0.002 < q^2 < 1.12 \ {\rm GeV^2/c^4}} \\ F_{\rm L} &= & 0.16 \pm 0.06 \pm 0.03 \\ A_{\rm T}^{(2)} &= & -0.23 \pm 0.23 \pm 0.05 \\ A_{\rm T}^{\rm Im} &= & +0.14 \pm 0.22 \pm 0.05 \\ A_{\rm T}^{\rm Re} &= & +0.10 \pm 0.18 \pm 0.05 \end{array}$

Belle: τ polarisation in B \rightarrow D* $\tau^{\scriptscriptstyle +}\,\nu$

- Belle full dataset
 - Complementary observable
 - Hadronic tag, $\tau^- \rightarrow \pi^- v_{\tau}, \tau^- \rightarrow \rho^- v_{\tau}$
- Polarisation of τ -

$$P_{ au}(D^*) = rac{\Gamma^+(D^*) - \Gamma^-(D^*)}{\Gamma^+(D^*) + \Gamma^-(D^*)}$$

- $\Gamma^{\pm}(D^*)$: decay rate with τ helicity $\pm \frac{1}{2}$
- Differential BR

$$\frac{d\Gamma(D^*)}{d\cos\vartheta_{hel}} = \frac{\Gamma(D^*)}{2} \left[1 + \alpha P_{\tau}(D^*)\cos\vartheta_{hel}\right]$$
$$\tau \to \pi \nu_{\tau} \ (\alpha = 1)$$
$$\tau \to \rho \nu_{\tau} \ (\alpha = 0.45)$$

 $\frac{Result:}{P_{\tau}^{SM}} = -0.497 \pm 0.013$ $P_{\tau} = -0.38 \pm 0.51^{+0.21}_{-0.16}$

Compatible with SM