Introduction of IHEP:

Status and Future Plan

Yifang Wang

History

May 19, 1950 :

Institute of Modern Physics, CAS Oct. 6, 1953:

Institute of Physics, CAS

July 1, 1958 :

Institute of atomic energy

Feb. 1, 1973:

Institute of High Energy Physics, CAS

IHEP Today

		Theoretical Physics
Insti	Research	Experimental Physics
itut		Astro-particle physics
e of		Accelerator Physics
Hic		Multi-discipline research
gh E		Applied tech. center
iner		Computer center
VD.	Administration	Dongguan Campus
Physics	Support	 Employee: ~ 1500 Students : ~ 500 Visitors: ~ 500 Budget : ~ 1.4 B RMB/year

Particle physics in China started from BEPC BEPCII/BESIII: Operational since 2009

e⁺e⁻ collider at tau-charm

BESIII: an international collaboration

Political Map of the World, June 1999

BESIII Data Taking Status & Plan

	Previous Data set	BESIII now	Goal
J/psi	BESII: 58M	1.2 B	10B
Psi'	CLEO: 28 M	0.5 B	3B
Psi"	CLEO: 0.8 /fb	3.0/fb	20 /fb
ψ(4040)/ψ(4160) /X(4260) etc.	CLEO: 0.6/fb @ ψ(4160)	0.5/fb ψ(4040); 2.3/fb @~4260, 0.5/fb@~4360; 1/fb@~4420; 0.5/fb@~4600	~ 10 /fb
R scan & Tau	BESII @10K/pnts	105 pnts@3.8-4.6 GeV	100K/pnts

BESIII will continue for the next 8-10 years: Unique in the world

Highlights from BEPCII/BESIII

- Main Highlights:
 - Discovery of Zc[±](3900): a fourquark states
 - Discovery of neutral accompany states: Zc⁰(3900)
 - Discovery of higher mass accompany states Z_c(4025)/Z_c(4020), ...
 - Exotic light hadrons: X(1835),
 X(1870), X(2120), ...
 - Charm physics, QCD, etc.
- > 25 papers/year, > 150 papers in total so far
- BESIII will continue to operate for another ~8 years.

The Future: CEPC+SppC

- An e⁺e⁻ collider for Higgs&Z factories (L> 2×10³⁴cm⁻²s⁻¹) in a 100 km tunnel with 30 MW SR power; upgradable to 50 MW
- At least 4 SR beamlines with $E_{\gamma} > 600 \text{ keV}$
- Compatible to possible pp/ep/AA colliders in the future

CEPC accelerator

- Design: partial and full double ring, 100 km, 30 MW
- Accelerator Physics: lattice, bem-beam interactions, optimization, dynamic aperture, ...
- > MDI, RF system, injector, ...

参数	Design Goal for Z	Design Goal for Higgs
Particles	e+, e-	e+, e-
Center of mass energy	2*45.5 GeV	2*120 GeV
peak luminosity	>1*10 ³⁴ /cm ² s	2*10 ³⁴ /cm ² s
No. of IPs	2	2
Polarization	Possible	

CEPC option

Daya Bay reactor neutrino experiment

First measurement reported in 2012:

 $\begin{array}{l} \text{Sin}^2 2 \theta_{13} \text{=} 0.092 \pm 0.016 (\text{stat}) \pm 0.005 (\text{syst}) \\ \text{Probability of non-zero } \theta_{13} \quad 5.3 \ \sigma \end{array}$

F.P. An et al., Phys. Rev. Lett. 108, (2012) 171803

Current precision: ~ 4 % Will continue until 2020, goal: 3%

Daya Bay Collaboration

Political Map of the World, June 1999

Europe (2)

Asia (20)

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. Univ., Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ.,

National United Univ.

North America (16)

BNL, Caltech, LBNL, Iowa State Univ., Illinois Inst. Tech., Princeton, RPI,
UC-Berkeley, UCLA, Univ. of Cincinnati,
Univ. of Houston, Univ. of Wisconsin,
William & Mary, Virginia Tech.,
Univ. of Illinois-Urbana-Champaign, Siena

~250 Collaborators

Next Step: JUNO for Mass Hierarchy

- Construction started on 2015
- Planned data taking on 2020

JUNO Detector and Challenges

- − Largest LS detector → × 20 KamLAND, × 40 Borexino
- Highest light yield $\rightarrow \times 2$ Borexino, $\times 5$ KamLAND

- Hugh cavern:
 - **≻** ~ 48m× 70m,
 - Under construction
- > Largest Acrylic tank:
 - ▶ Φ 35.4米(13m@SNO)
 - Contract signed
- ➢ 20 kt LS
 - Best attenuation length: 25m (15m @ Daya Bay)
 - Lab test OK
- ➢ 20000 20" PMT
 - Highest photon detection efficiency : 30%*100% = 30% (25%*60%=15% @ SuperK)
 - Prototypes OK, contract signed:
 - > 15000 NNVT, 5000 HAMAMATSU

JUNO Collaboration

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Tuebingen
Brazil	PUC	China	Tsinghua U.	Italy	INFN Catania
Brazil	UEL	China	UCAS	Italy	INFN di Frascati
Chile	PCUC	China	USTC	Italy	INFN-Ferrara
Chile	UTFSM	China	U. of South China	Italy	INFN-Milano
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano Bicocca
China	Beijing Normal U.	China 🔛	Wuhan U.	Italy	INFN-Padova
China	CAGS	China	Xi'an JT U.	Italy 🔪 🔍	INFN-Perugia
China	ChongQing University	China	Xiamen University	Italy	INFN-Roma 3
China	CIAE	China	NUDT	Latvia	IECS
China	DGUT	Czech Rep.	Charles U.	Pakistan	PINSTECH (PAEC)
China	ECUST	Finland	University of Oulu	Russia	INR Moscow
China	Guangxi U.	France	APC Paris	Russia	JINR
China	Harbin Institute of Technology	France	CENBG	Russia	MSU
China	IHEP	France	CPPM Marseille	Slovakia	FMPICU
China	Jilin U.	France	IPHC Strasbourg	Taiwan	National Chiao-Tung U.
China	Jinan U.	France	Subatech Nantes	Taiwan	National Taiwan U.
China 🧕	Nanjing U.	Germany	Forschungszentrum Julich ZEA2	Taiwan	National United U.
China	Nankai U.	Germany	RWTH Aachen U.	Thailand	NARIT
China 🤘	NCEPU	Germany	TUM	Thailand	PPRLCU
China	Pekin U.	Germany	U. Hamburg	Thailand	SUT
China	Shandong U.	Germany	IKP FZJ	USA	UMD1
China	Shanghai JT U.	VI VC		USA	UMD2

550 collaborators from 71 institutions in 17 countries and regions

From ASy/ARGO to LHAASO

Main Array: 5195 scintillator detectors every 15 m & 1146 µ-detectors every 30 m

Water Cherenkov Detector 80,000 m²

Funded for 2017-2020 Construction started CR Detectors: 18 Wide field View Cherenkov telescopes & Large Dynamic WCDA++: precision measurement of CR spectrum

Science at LHAASO

- Unique for 10 TeV γ astronomy with the highest sensitivity in the world
- Window for discovering the hadronic origins of cosmic rays
- Crucial CR data covering a very wide energy region of knees
- Exploring for new physics, such as DM or quantum gravity

Complementary to CTA:

- > All the time
- > All the sky
- Time-variant sources
- Extended sources
- Fast indication for CTA

Hard X-ray modulated telescope (HXMT)

Full sky survey with good angular resolution and sensitivity
 Lunched in June, 2017

Total mass: 1021kg signal: 1881 Ch. Power: 350W

HERD @ the China's Space Station

- Science
 - Dark matter search: γ from 0.1 – 10,000 GeV
 - Spectral and composition measurements of CRs between 300 GeV to PeV
 - Complementary to LHAASO: directly measured composition & spectrum in space
 - Next generation cosmic-ray exp. after AMS & Fermi

Status

- Groups from China, Italy, Switzerland, Sweden,...
- Launch in ~2023

	Χ0(λ)	ΔΕ/Ε	e/p	e GF	p GF
		for e	sep	m²sr@	m²sr@1
				200GeV	00TeV
HERD (2020)	55(3)	1%	10 ⁻⁶	3.1	2.3
Fermi (2008)	10	12%	10 ⁻³	0.9	
AMS02 (2011)	17	2%	10 ⁻⁶	0.12	
DAMPE (2015)	31	1%	10 ⁻⁴	0.3	
CREAM (2015)	20(1.5)				0.2

Facilities for other Sciences

China Spallation Neutron Source

Phase I: 100 kW Phase II: 500 kW Start time: 2011 Completion time: 2017

- Construction finished
- ➢ LINAC tested
- First neutron beam this week

ADS R&D

- Accelerator-driven reactors for spent fuel transmutation.
- ADS Injector I Proton Beam Reaches 14 low-β SC spoke cavities: <u>10.1MeV@10.5mA</u> on June 17, 2016
- Future: 250MeV@10mA approvedGoal: 1.5 GeV@10mA

 $\mathbf{5}$ insertion devices , $\mathbf{14}$ beam lines , $\mathbf{15}$ experimental stations

> 2000 dedicated hours /year

> 500 exp./year , from > 100 institutions

High Energy Photon Source(HEPS)

6GeV SR facility Low emmitance: 0.06nm·rad ~1300m storage ring 48-7BA lattice Brilliance: >10²²phs/s/mm²/mrad²/0.1BW

Future Plan of IHEP

