Mikihiko Nakao (KEK-IPNS) mikihiko.nakao@kek.jp

21st International Conference on Particles and Nuclei 1–5 September, 2017, Beijing

Simple 3×3 complex matrix of tree-level quark transitions, loop and box diagrams give a rich structure, including CPV

2008 Nobel Prize to Kobayashi and Maskawa

Quark transitions in NP modify the Unitarity Triangle

Deviation of loop (ϕ_1 and V_{td}) from tree (ϕ_3 and V_{ub}) as a clear sign of NP, parametrized in a model independent way

 $M_{12} = M_{12}^{\rm SM} (1 + h_d e^{2i\sigma_d})$

[Ligeti arxiv:1704.02938]

Recent progress — outline of this talk

• ϕ_1/β — addition of $\psi(2S)$ and electron modes (LHCb) — from time-dependent Dalitz analysis (Belle)

- ϕ_2 new results on $B^0 o \pi^0 \pi^0$ (Belle)
- γ new results (LHCb)
- V_{cb} recent progress on form factor (Belle)
- V_{ub} inclusive electron spectrum of $B \rightarrow X_u e \nu$ (BaBar) — measurement of $B \rightarrow \mu \nu$ (Belle)

Disclaimer: some of the recent topics are not included: such as ϕ_s measurement (LHCb), $B \rightarrow \eta' \ell \nu$ (Belle), CPV in *b*-baryons (LHCb), CPV in $B \rightarrow KK\pi$ (Belle), ...

LHCb: $B ightarrow (c\overline{c})K_S$ [G.Cowan

Huge signal samples, penalty in small flavor tag efficiency

• New: $B \rightarrow J/\psi(\rightarrow e^+e^-)K_S$ and $B \rightarrow \psi(2S)(\rightarrow \mu^+\mu^-)K_S$ [dominant mode: $B \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K_S$, PRL115,031601(2015)]

time dependent fit: $A_{CP}(t) = S \sin(\Delta m t) - C \cos(\Delta m t)$, $S = \sin 2\beta$

LHCb: sin2 β

(previous average)

time-dependent Dalitz: $B ightarrow D^{(*)}h^0$ ($h^0 = \pi^0, \eta, \eta', \omega$)

$$N_{i}(\Delta t, \phi_{1}) = h_{2}e^{-\frac{|\Delta t|}{\tau_{B}}} \left[1 + Q_{B}\frac{K_{i} - K_{-i}}{K_{i} + K_{-i}} \cos(\Delta m_{B}\Delta t) + 2Q_{B}\xi_{h^{0}}(-1)^{\prime}\frac{\sqrt{K_{i}K_{-i}}}{K_{i} + K_{-i}} \sin(\Delta m_{B}\Delta t)(S_{i}\cos 2\phi_{1} + C_{i}\sin 2\phi_{1}) \right]$$

Belle: ϕ_1 from Dalitz

is definitely excluded (and no more needed in the CKMfitter UT plot)

ϕ_2/β : isospin analysis

 sin 2φ₂ from B → π⁺π⁻ need to resolve "penguin pollution"
 S = √1 - A² sin 2(φ₂ + Δφ₂), where Δφ₂ from 3 branching fractions and 2 direct CPV

Gronau, London PRL65, 3381 (1990)

• $B \to \pi^+\pi^-$ and $B \to \pi^+\pi^0$ have been precisely measured, but it took long time for Belle to finalize $B \to \pi^0\pi^0$ [No charged track, need precise timing info for photon clusters]

Belle: $B ightarrow \pi^0 \pi^0$ and ϕ_2

- Two interfering diagrams have the same order in λ and weak phase difference ϕ_3/γ (and unknown strong phase difference δ)
- $r = |A(\overline{D}^0 K^-)/A(D^0 K^-)| \sim 0.2$ for color suppression ($r^2 \sim 0.04$)
- ϕ_3/γ extraction methods
 - GLW $D^0 \rightarrow f_{CP}$, e.g., K^+K^- , $\pi^+\pi^-$, $K_S\pi^0$
 - ADS $D^0 \rightarrow$ doubly-cabibbo-suppressed, e.g., $K^+\pi^-$
 - **GGSZ** $D^0 \rightarrow K_S \pi^+ \pi^-$, using Dalitz plot

LHCb: γ from $B \rightarrow D^{(*)0}K$

- GLW method using $D_{CP} = K^+K^-$ and $\pi^+\pi^-$
- Partial reco of $D^* o D^0 \pi^0$ and $D^0 \gamma$ (soft π^0/γ not reconstructed)

Results

 $[KK]_D K \qquad A_{CP} = +0.126 \pm 0.014 \pm 0.002$ $[\pi\pi]_D K \qquad A_{CP} = +0.115 \pm 0.025 \pm 0.007$ $[D_{CP}\pi^0]_{D^*} K \quad -A_{CP} = +0.151 \pm 0.033 \pm 0.011 (4.3\sigma)$ $[D_{CP}\gamma]_{D^*} K \qquad A_{CP} = +0.276 \pm 0.094 \pm 0.047 (2.4\sigma)$

γ/ϕ_3 : average

- γ measurement is dominated by LHCb, who provides

 85 observables and 37 parameters
- World average is better than 5°
- More to come from LHCb...

LHCb: γ from $B \rightarrow D^0 K^*$

[G.Cowan LP'17, LHCb-PAPER-2017-030 in preparation]

Vub and Vcb, inclusive and exclusive

Both V_{ub} and V_{cb} suffer from discrepancy between **inclusive** and **exclusive** analyses by 2–3 σ

 $|V_{cb}|(D^*\ell\nu) = (39.05 \pm 0.47 \pm 0.58) \times 10^{-3}$ $|V_{cb}|(incl) = (42.19 \pm 0.78) \times 10^{-3}$ $|V_{ub}|(\pi \ell \nu) = (3.67 \pm 0.15) \times 10^{-3}$ $|V_{ub}|(\text{incl}) = (4.52 \pm 0.15 \pm 0.13) \times 10^{-3}$

Belle: $B ightarrow D^* \ell u$ hadronic tag

Standard method: CLN form factor 3-angles (θ_v , θ_ℓ , χ) and w (= $\frac{m_B^2 - m_{D^*} - q^2}{m_B m_{D^*}}$)

$$\frac{d^4 \Gamma(B \to D^* \ell \nu)}{dw \, d \cos \theta_\nu \, d \cos \theta_\ell \, d\chi} = f(|V_{cb}|^2, \rho_D^2, R_1, R_2)$$

FF parameters determined from fit

 $|V_{cb}| = (37.4 \pm 1.2) \times 10^{-3}$

 $\Leftrightarrow |V_{cb}|_{\rm WA} = (39.2\pm0.7)\times10^{-3}$

not filling the gap between inclusive / exclusive

[arXiv:1702.01521 preliminary]

FF refit: BGL vs CLN

Alternative FF: BGL instead of CLN

Boyd-Grinstein-Lebed PRD56,6895(1997), Caprini-Lellouch-Neubert NPB530,153(1998)

Refit of Belle data

by Bigi-Gambino-Schacht PLB769,441(2017), also by Grinstein Kobach PLB771,359(2017)

(old plot from 2015)

Reconciliation of inclusive-exclusive?

BaBar: $B \rightarrow X_u e \nu$ inclusive

4 different models to extrapolate the spectrum (shape function)

- **DN (1999)**
- BLNP (2004)
- GGOU (2007)

Endpoint analysis single bin: 2.1–2.7 GeV

HQE parameters from latest HFLAV fit

BaBar: $|V_{ub}|$

- Lower (= closer to the exclusive) in 3 models
- Variation of shape function parameters do not affect much
- Model dependence = limitation of single bin extrapolation

$B^+ ightarrow oldsymbol{\ell}^+ u$ and CKM

- Purely leptonic decay is proportional to $f_B^2 |V_{ub}|^2$ (in SM), (also sensitive to type-II 2HDM charged Higgs)
- However, f_B is not precisely known (only from Lattice)

- Instead, more reliable constraint using Δm_d and other CKM (then no direct constraint to $|V_{ub}|$) p-value
- B → τν has been measured, but no single 5σ signal yet (and previous tension is no more significant)
- $B
 ightarrow \mu
 u$ result is wanted

(lepton universality test is of great interest now)

Belle: $B^+
ightarrow \mu^+
u$

 $\mathcal{B}(\boldsymbol{B} \to \boldsymbol{\mu}\boldsymbol{\nu}) = (6.5 \pm 2.2 \pm 1.6) \times 10^{-7} \in [2.9, \ 10.7] \times 10^{-7}$ (90%CL)

- 2.4 σ from null, consistent with $\mathcal{B}_{SM} = (3.8 \pm 0.3) \times 10^{-7}$
- One of anticipated early Belle II hot topics (!)

- :KM Mikihiko Nakao I
- Forward endcap installation very soon
- Phase II operation (no VXD, limited physics) 2018.2.–
 - Phase III full physics run (late 2018 or) 2019-

Rich physics ahead!

Current inconclusive NP "hints" \rightarrow "5 σ -observed" (?)

✓ Topics involving neutrals and inclusive: $\tau \nu$, $\rho \gamma$, $K \nu \overline{\nu}$, $X_s \gamma$, ...

LHCb upgrade plan covered in the next talk

CKM prospects

- All angles are measured with $\sim 1\%$ precision
- V_{ub} inconsistency has to be resolved
- Chance to find the clear NP signal (!)

New paradigm of quark transition is coming (!?)

Summary

- Belle and BaBar are finalizing the analysis of CKM
- LHCb pushing down γ , now WA with 5° precision
- V_{ub} internal inconsistency has to be resolved
- Major progress by startup of Belle II and LHCb upgrade