Background free search for neutrinoless double beta decay with GERDA Phase II

Christoph Wiesinger for the GERDA collaboration Physik-Department and Excellence Cluster Universe, Technical University of Munich

PANIC 2017, September 1st, Beijing

(neutrinoless) double beta decay

- allowed in standard model (SM)
- second order weak process
- $T_{1/2} \approx 10^{19} 10^{24} \,\mathrm{yr}$

(neutrinoless) double beta decay

- allowed in standard model (SM)
- second order weak process
- $T_{1/2} \approx 10^{19} 10^{24} \,\mathrm{yr}$

• lepton number violation \rightarrow beyond SM, Δ L=2 operator

- ν has Majorana mass component
- $T_{1/2} > 10^{21} 10^{26}$ yr

- exchange of massive Majorana neutrino
- constraints on lightest neutrino mass eigenstate
- mass hierarchy

0νββ:

neutrinoless double beta decay

Parameter space:

neutrinoless double beta decay

Parameter space:

Sensitivity:

$$T_{1/2}^{0\nu} \propto \sqrt{M \cdot t}/_{BI \cdot \Delta E}$$

GERDA goal: quasi background free $\rightarrow T_{1/2}^{0\nu} \propto M \cdot t$

double beta decay in ⁷⁶Ge

Summed electron spectrum (⁷⁶Ge):

double beta decay in ⁷⁶Ge

Summed electron spectrum (⁷⁶Ge):

- $2\nu\beta\beta$: ⁷⁶Ge \rightarrow ⁷⁶Se + 2 e^- + 2 $\bar{\nu}_e$
- $0\nu\beta\beta$: ⁷⁶Ge \rightarrow ⁷⁶Se + 2 e^-
- \rightarrow search for **peak** @ $Q_{\beta\beta} = 2039 \text{ keV}$

GERDA detectors: 60-<u>80 mm</u> **HPGe** detectors enriched in ⁷⁶Ge (semi-)coaxial and 70-110 mm broad energy (BE)Ge Coaxia type detectors high purity p-type \rightarrow low background Ge high density -> $\beta\beta$ point like p⁺ electrode n⁺ electrode (read-out) 3-4 kV 0 Vvery good energy resolution 25-50 mm BEG p-type ~0.2% at $Q_{\beta\beta}$ Ge source = detector 65-80 mm \rightarrow high detection [Eur.Phys.J. C74 (2014) 2764,

- efficiency

Eur.Phys.J. C75 (2015) 39]

double beta decay in ⁷⁶Ge

Summed electron spectrum (⁷⁶Ge):

- $2\nu\beta\beta$: ⁷⁶Ge \rightarrow ⁷⁶Se + $2e^-$ + $2\bar{\nu}_e$
- $0\nu\beta\beta$: ⁷⁶Ge \rightarrow ⁷⁶Se + 2 e^-
- \rightarrow search for **peak** @ $Q_{\beta\beta} = 2039 \text{ keV}$

GERDA detectors:

- HPGe detectors enriched in ⁷⁶Ge
- (semi-)coaxial and broad energy (BE)Ge type detectors
- high purity \rightarrow low background
- high density -> $\beta\beta$ point like
- very good energy resolution ~0.2% at Q_{ββ}
- source = detector
 → high detection
 efficiency

[Eur.Phys.J. C74 (2014) 2764, Eur.Phys.J. C75 (2015) 39]

- staged high resolution background free $0\nu\beta\beta$ search
- background reduction by
 - material selection / passive shielding
 - active background suppression
- -> bare detectors in liquid argon (LAr)

- staged high resolution background free $0\nu\beta\beta$ search
- background reduction by
 - material selection / passive shielding
 - active background suppression
- -> bare detectors in liquid argon (LAr)

active background suppression

discriminate point-like (single site) $\beta\beta$ interaction in bulk from background processes by event topology

- AC: detector anti-coincidence
- LAr veto: scintillation light read-out (Phase II)
- **PSD:** pulse shape discrimination

- staged high resolution background free $0\nu\beta\beta$ search
- background reduction by
 - material selection / passive shielding
 - active background suppression
- -> bare detectors in liquid argon (LAr)

active background suppression

discriminate point-like (single site) $\beta\beta$ interaction in bulk from background processes by event topology

- AC: detector anti-coincidence
- LAr veto: scintillation light read-out (Phase II)
- **PSD:** pulse shape discrimination

- staged high resolution background free $0\nu\beta\beta$ search
- background reduction by
 - material selection / passive shielding
 - active background suppression
- -> bare detectors in liquid argon (LAr)

active background suppression

discriminate point-like (single site) $\beta\beta$ interaction in bulk from background processes by event topology

- AC: detector anti-coincidence
- LAr veto: scintillation light read-out (Phase II)
- **PSD:** pulse shape discrimination

- staged high resolution background free $0\nu\beta\beta$ search
- background reduction by
 - material selection / passive shielding
 - active background suppression
- -> bare detectors in liquid argon (LAr)

active background suppression

discriminate point-like (single site) $\beta\beta$ interaction in bulk from background processes by event topology

- AC: detector anti-coincidence
- LAr veto: scintillation light read-out (Phase II)
- **PSD:** pulse shape discrimination

the GERDA collaboration

GERmanium Detector Array - GERDA

a) overview

- a) overview
- b) liquid argon (LAr) veto instrumentation

a) overview

- c) detector array
- b) liquid argon (LAr) veto instrumentation

... in pictures

data taking

coaxials	5 . 0 kg · yr -> 16.2 kg · yr ->
BEGe	5 . 8 kg · yr -> 18.2 kg · yr ->

data taking, previous Phase II result

- 30 enriched BEGe detectors (20.0 kg)
- 7 enriched coaxial detectors (15.6 kg)
- Dec 2015 to April 2017, 93% duty cycle

exposure					
coaxials	5 . 0 kg · yr -> 16.2 kg · yr ->				
BEGe	5 . 8 kg · yr -> 18.2 kg · yr ->				

ARTICLE

[Nature 544 (2017) 47]

doi:10.1038/nature21717

Background-free search for neutrinoless double- β decay of ⁷⁶Ge with GERDA

The GERDA Collaboration'

background index @ Q_{etaeta} [cts/(keV \cdot kg \cdot yr)]						
coaxials	$3.5^{+2.1}_{-1.5}\cdot 10^{-3}$					
BEGe	$0.7^{+1.1}_{-0.5}\cdot 10^{-3}$					

 -> background < 1 cts for full design exposure (≥ 100 kg · yr)

limit on 0 uetaeta decay in 76 Ge

 $4.0\cdot 10^{25}\ yr$ median sensitivity

 $T_{1/2}^{0\nu} > 5.3 \cdot 10^{25} \mbox{ yr} \ (90\% \mbox{ CL})$

data taking, previous Phase II result

- 30 enriched BEGe detectors (20.0 kg)
- 7 enriched coaxial detectors (15.6 kg)
- Dec 2015 to April 2017, 93% duty cycle

exposure				
coaxials	5 . 0 kg · yr → 16.2 kg · yr →			
BEGe	5.8 kg · yr -> 18 . 2 kg · yr ->			

... only BEGe data unblinded for this release

ARTICLE

[Nature 544 (2017) 47]

doi:10.1038/nature21717

Background-free search for neutrinoless double- β decay of ⁷⁶Ge with GERDA

The GERDA Collaboration'

background index @ Q_{etaeta} [cts/(keV \cdot kg \cdot yr)]						
coaxials	$3.5^{+2.1}_{-1.5}\cdot 10^{-3}$					
BEGe	$0.7^{+1.1}_{-0.5} \cdot 10^{-3}$					

 -> background < 1 cts for full design exposure (≥ 100 kg · yr)

limit on $0 u\beta\beta$ decay in ⁷⁶Ge

- $4.\,0\cdot 10^{25}\,yr$ median sensitivity
- $T_{1/2}^{0\nu} > 5.3 \cdot 10^{25} \text{ yr} (90\% \text{ CL})$

energy reconstruction / resolution

- ~weekly calibration with ²²⁸Th calibration sources
- only data with energy scale stability better than resolution is used for analysis
- energy reconstruction with "zero area cusp" (ZAC) filter [Eur.Phys.J. C75 (2015) 255]
- final resolution @ $Q_{\beta\beta}$ corrected for ${}^{40/42}$ K lines in physics data

	FWHM at Q_{etaeta}
coaxials	3.90(7) keV
BEGe	2.93(6) keV

background spectrum / LAr veto suppression

compton continuum suppression by LAr veto
 -> left with "pure" 2νββ continuum

 $0\nu\beta\beta$ acceptance (random coincidences)

PSD performance

- coaxial detectors:
 - artifical neutral network analysis
 - multi site event recognition, as in Phase I, tuned with calibration data
 - new α event suppression under development

- mono-parametric cut based on current pulse amplitude A and total energy E
- tuned by calibration data

unblinding @ Cracow (30th of June 2016)

new result, statistical analysis

unblinding of $18.2 \text{ kg} \cdot \text{yr}$ BEGe data

٠

1 counts / (keV·kg·yr) background index at $Q_{\beta\beta}$ 10 2 cts -> $0.5^{+0.5}_{-0.3} \cdot 10^{-3} \cdot \text{cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$ 10^{-2} 10^{-3} 1 counts / (keV-kg-yr) 10 10⁻² 10^{-3} 1 counts / (keV·kg·yr) 10⁻¹ 10⁻²

new result, statistical analysis

unblinding of $18.2 \text{ kg} \cdot \text{yr}$ BEGe data

٠

new result, statistical analysis

- unblinding of $18.2 \; kg \cdot yr \,$ BEGe data

background index at Q_{etaeta}

4 cts -> $1.0^{+0.6}_{-0.4} \cdot 10^{-3} \cdot \text{cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$

- -> 2 new events > 10 σ from $Q_{\beta\beta}$
- combined unbinned maximum likelihood fit of
 - Phase I (4 datasets), 23.5 kg · yr
 - Phase IIa coaxials, 5.0 kg · yr
 - Phase IIb BEGe, $5.8 + 12.4 = 18.2 \text{ kg} \cdot \text{yr}$

	Profile likelihood 2-side-test-stat*	Bayesian flat prior
0 uetaeta best fit value [cts]	0	0
$T^{0 u}_{1/2}$ lower limit $[10^{25}~{ m yr}]$	> 8.0 (90% CL)	> 5.1 (90% CI)
$T^{0 u}_{1/2}$ median sensitivity $[10^{25} m yr]$	> 5.8 (90% CL)	> 4.5 (90% CI)

conclusions

- GERDA Phase II is taking data since > 1.5 yr
 - $-\,$ valid exposure of 34.4 kg $\cdot\,$ yr
 - $-\,$ this data release with 23.3 $kg\cdot yr$

new limit on 0 uetaeta decay in 76 Ge

 $T_{1/2}^{0\nu} > 8.0 \cdot 10^{25} \mbox{ yr} \ (90\% \mbox{ CL})$

 $m_{etaeta} < 0.\,12 - 0.\,27~{
m eV}~(90\%~{
m CL})$

background index at Q_{etaeta}

coaxials	$2.7^{+1.0}_{-0.8} \cdot 10^{-3} \cdot cts/(keV \cdot kg \cdot yr)$
BEGe	$1.0^{+0.6}_{-0.4} \cdot 10^{-3} \cdot \text{cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$

- > high resolution background free $0\nu\beta\beta$ search
- > GERDA will stay background free

Phase II goals						
background	$\sim 10^{-3}$ cts/(keV \cdot kg \cdot yr)	1				
exposure	$\gtrsim 100 \text{ kg} \cdot \text{yr}$					
sensitivity	$T_{1/2}^{0 u} \gtrsim 10^{26}~yr$					

...and beyond

- LEGEND (Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay) collaboration has been formed in October 2016
 - 219 members, 48 institutions, 16 countries
 - <u>www.legend-exp.org</u>

 first stage: 200 kg upgrade of existing infrastructure at LNGS

LEGEND-200 goals					
background	$\sim 2 \cdot 10^{-4} \text{ cts/(keV} \cdot \text{kg} \cdot \text{yr})$				
discovery potential	$T_{1/2}^{0 u}>10^{27}~yr$				
LEGEND-1K goals					
background	$< 3 \cdot 10^{-5}$ cts/(keV \cdot kg \cdot yr)				
discovery potential	$T_{1/2}^{0 u}>10^{28}{ m yr}$				

backup

background model

- same approach as in Phase I [Eur.Phys.J. C74 (2014) 2763]
- low statistics, constrainty by e.g. screening measurements
- before LAr veto & PSD
- full combined fit including LAr veto and PSD under development
- analysis window 1930 2190 keVexcl. $\pm 5 \text{ keV}$ around known γ lines
- flat background in ROI

energy scale stability / calibrations

- ~weekly calibration with ²²⁸Th calibration sources
- online stability monitoring by injection of test pulses

 only data with energy scale stability better than resolution is used for analysis

liquid argon veto

background spectrum

- compton continuum suppression by LAr veto
- multisite/surface event suppression by PSD
 - artifical neutral network analysis for coaxials
 - mono-parametric (A/E) cut for BEGe

0 uetaeta acceptance						
LAr veto	(97.7 ± 0.1) %					
PSD coaxials	(79 ± 5) %					
PSD BEGe	(87 ± 3) %					

groove alpha events

statistical analysis

• p-value for the hypothesis test as function of the inverse $T_{1/2}$

comparison of experiments / designs

comparison of experiments / designs

comparison of experiments / designs

Experiment	Iso	Iso.	σ	BOI	6	c .	E B		3σ disc. sens.		Required		
Experiment	150.	Mass			CFV	Csig	C		$\hat{T}_{1/2}$	\hat{m}_{etaeta}	Imp	rovei	ment
		$[\mathrm{kg}_{iso}]$	[keV]	$[\sigma]$	[%]	[%]	$\left[\frac{\mathrm{kg}_{iso}\mathrm{yr}}{\mathrm{yr}}\right]$	$\left[\frac{\mathrm{cts}}{\mathrm{kg}_{iso}\mathrm{ROI}\mathrm{yr}}\right]$	[yr]	[meV]	Bkg	σ	Iso. Mass
LEGEND 200 [61, 62]	⁷⁶ Ge	175	1.3	[-2, 2]	93	77	119	$1.7\cdot 10^{-3}$	$8.4\cdot10^{26}$	40-73	3	1	5.7
LEGEND 1k [61, 62]	76 Ge	873	1.3	[-2, 2]	93	77	593	$2.8\cdot 10^{-4}$	$4.5\cdot10^{27}$	17–31	18	1	29
SuperNEMO [68, 69]	82 Se	100	51	[-4, 2]	100	16	16.5	$4.9\cdot 10^{-2}$	$6.1\cdot10^{25}$	82-138	49	2	14
CUPID [58, 59, 70]	82 Se	336	2.1	$\left[-2,2 ight]$	100	69	221	$5.2\cdot 10^{-4}$	$1.8 \cdot 10^{27}$	15–25	n/a	6	n/a
CUORE [52, 53]	$^{130}\mathrm{Te}$	206	2.1	[-1.4, 1.4]	100	81	141	$3.1\cdot10^{-1}$	$5.4\cdot10^{25}$	66–164	6	1	19
CUPID [58, 59, 70]	$^{130}\mathrm{Te}$	543	2.1	[-2, 2]	100	81	422	$3.0\cdot10^{-4}$	$2.1\cdot10^{27}$	11–26	3000	1	50
SNO+ Phase I [66, 71]	$^{130}\mathrm{Te}$	1357	82	[-0.5, 1.5]	20	97	164	$8.2\cdot 10^{-2}$	$1.1\cdot 10^{26}$	46-115	n/a	n/a	n/a
SNO+ Phase II [67]	$^{130}\mathrm{Te}$	7960	57	[-0.5, 1.5]	28	97	1326	$3.6\cdot10^{-2}$	$4.8\cdot10^{26}$	22–54	n/a	n/a	n/a
KamLAND-Zen 800 [60]	¹³⁶ Xe	750	114	[0, 1.4]	64	97	194	$3.9\cdot 10^{-2}$	$1.6\cdot 10^{26}$	47–108	1.5	1	2.1
KamLAND2-Zen [60]	¹³⁶ Xe	1000	60	[0, 1.4]	80	97	325	$2.1\cdot 10^{-3}$	$8.0\cdot10^{26}$	21-49	15	2	2.9
nEXO [72]	¹³⁶ Xe	4507	25	[-1.2, 1.2]	60	85	1741	$4.4\cdot 10^{-4}$	$4.1 \cdot 10^{27}$	9-22	400	1.2	30
NEXT 100 [64, 73]	¹³⁶ Xe	91	7.8	[-1.3, 2.4]	88	37	26.5	$4.4\cdot10^{-2}$	$5.3\cdot10^{25}$	82–189	n/a	1	20
NEXT 1.5k [74]	¹³⁶ Xe	1367	5.2	[-1.3, 2.4]	88	37	398	$2.9\cdot 10^{-3}$	$7.9\cdot10^{26}$	21-49	n/a	1	300
PandaX-III 200 [65]	¹³⁶ Xe	180	31	$\left[-2,2 ight]$	100	35	60.2	$4.2\cdot 10^{-2}$	$8.3\cdot10^{25}$	65–150	n/a	n/a	n/a
PandaX-III 1k [65]	¹³⁶ Xe	901	10	[-2, 2]	100	35	301	$1.4\cdot 10^{-3}$	$9.0\cdot10^{26}$	20-46	n/a	n/a	n/a

Agostini, Bentao, Detwiler [arXiv:1705.02996]

discovery sensitivity

Agostini, Bentao, Detwiler [arXiv:1705.02996]

discovery probability

Agostini, Bentao, Detwiler [arXiv:1705.02996]

LEGEND: sensitivity for limit setting / discovery

Plot details:

- 60% "efficiency" including isotope fraction, active volume fraction, analysis cuts
- GERDA-II / MJD: 3 counts/(ROI t yr)
- LEGEND-200: 0.6 counts/(ROI t yr)
- LEGEND-1000: 0.1 counts/(ROI t yr)

N.B.: background-free operation is a prerequisite for a discovery