

A Precision Oscillation and Spectrum Experiment

Nathaniel Bowden

For the PROSPECT collaboration

PANIC 2017

LLNL-PRES-737668

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Motivation

Directly test the hypothesis of a new oscillation with $\Delta m^2 \sim 1 \text{ eV}^2$, i.e. oscillation length of few meters

Provide new tests of reactor models by making precision measurements of novel reactor spectra, esp. ²³⁵U fuel

Lawrence Livermore National Laboratory LLNL-PRES-737668

Recent Developments: Flux evolution & IBD Yields

Report IBD yields for U-235 and Pu-239 using change due to fuel evolution – demonstrates prediction for U-235 (at least) is incorrect

Tension between IBD yield from 26 previous reactor measurements and Daya Bay

Direct, model independent, search for short baseline oscillation remains well motivated

"not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos"

Hayes et al, arXiv:1707.07728

"the search for the explanation of the reactor antineutrino anomaly still remains open"

Giunti et al, arXiv:1708.01133

Approach to Short Baseline Reactor Measurements

Search for relative shape distortion in identical detector segments at different baselines → eliminate reactor model dependence

Research reactors are generally preferable:

- Access to shortest baselines
- Often use ²³⁵U fuel \rightarrow static fissile inventory
- Compact core dimensions provide greater sensitivity at $\Delta m^2 \sim 1 \text{ eV}^2$ **But**:
- Limited space for deployment
- Limited overburden
- Possibility of reactor generated background

PROSPECT Experiment Overview

Physics Objectives

- 1. Search for short-baseline oscillation at distances <12m
- 2. Precision measurement of 235 U reactor \overline{v}_e spectrum

Whitepaper, arXiv:1309.7647 PROSPECT collaboration

PROSPECT Physics Program J. Phys. G, 43 113001; <u>arXiv:1512.02202</u> PROSPECT collaboration

PROSPECT AD

- Segmented design using ⁶Li-doped liquid scintillator provides strong near-surface background rejection
- movable detector (7-12m baseline range) enables systematic control, background checks, and increased physics reach

Lawrence Livermore National Laboratory

PROSPECT Physics - Precision Oscillation Experiment

Osc/Nul

A model independent experimental approach to test for oscillation of eVscale neutrinos

Objectives 4σ test of best fit after 1 year $>3\sigma$ test of favored region after 3 years

PROSPECT Physics - Precision Spectrum Experiment

A precision measurement to address spectral unknowns

Objectives Measurement of ²³⁵U spectrum Compare different reactor models Compare different reactor cores

Testing ²³⁵U ∇_e spectrum models

Different reactor cores

PROSPECT

Experimental site: High Flux Isotope Reactor @ORNL

Compact Reactor Core

Power: 85 MW Fuel: HEU (²³⁵U) Core shape: cylindrical Size: h=0.5m r=0.2m Duty-cycle: 41%

- Established on-site operation
- User facility, 24/7 access
- Exterior access at grade
- Full utility access

PROSPECT Antineutrino Detector

- ~4000L of ⁶Li loaded liquid scintillator
- 11x14 segmented optical array, ~15 x 15 x 120 cm³ segment dimensions
- Double ended PMT readout, light guides, ~4.5%/ \sqrt{E} resolution
- Low mass optical separators, minimal dead material
- Full volume calibration access

Event Detection in PROSPECT AD

Event Identification

Background reduction through detector design & fiducialization

positron from inverse beta decay (IBD)	
Delay signal: ~0.5 MeV signal from neutron capture on ⁶ Li 40us delayed n capture	IBD event in segmented ⁶ LiLS detect

inverse beta decay (IBD) γ-like prompt, n-like delay

fast neutron background

recoil-like prompt, capture-like delay capture-like prompt, capture-like delay

accidental gamma background γ-like prompt, γ-like delay

Background reduction is key challenge

Pulse Shape Discrimination

PROSPECT Detector & Shielding Development

5cm length **PROSPECT-0.1** 0.1 liters Characterize LS LS, ⁶LiLS Aug 2014-Spring 2015 multi-layer 12.5 length **PROSPECT-2** shielding 1.7 liters Background studies Dec 2014 - Aug 2015 ⁶LiLS **PROSPECT-20** 1m length Segment characterization 23 liters Scintillator studies LS, ⁶LiLS local reactor Background studies shielding Spring/Summer 2015 1x2 segments **PROSPECT-50** 1.2m length Baseline design prototype 50 liters Spring 2016 ⁶LiLS 11x14 segments **PROSPECT AD** 1.2m length 2017 ~4 tons ⁶LiLS

Development of PROSPECT Detector Components

Low-Mass Optical Separators

High reflectivity, high rigidity, low mass reflector system developed

DF 2000 PE

Two-sided adhesive

⁶Li-Loaded Liquid Scintillator

- Developed non-toxic, nonflammable formulations based on EJ-309, LAB, Ultima Gold
- EJ-309 selected as baseline

Full-scale production for PROSPECT AD underway

Full Scale Prototyping - PROSPECT20

Validates optical system design

- Li-loaded liquid scintillator
- Reflector panels

- Compton edge of ^{60}Co and ^{217}Bi $\gamma\text{-rays}$ and the quenched (n, Li) capture peak from ^{252}Cf neutrons
- light collection: 522±16 PE/MeV

EJ-309 LS

Internal reflectors

15.2 cm

System Prototyping – PROSPECT50

Validates AD component design

- Low-mass Optical Separators
- Support Structure
- PMT modules
- Filling System
- Calibration: LED & γ/n Sources

Mid-Segment LED Calibration

Source Capsule

PMT Modules

Segment Assembly

P-50 Installed in Shield

PROSPECT50 performance as expected based on earlier prototypes

AD Construction is underway

Lawrence Livermore National Laboratory

Reactor Background Measurement & Shield Design

Shield design based on surveys & multiple onsite prototype deployments

Extensive measurement campaigns (ongoing):

- Characterize background field at HFIR
- Emphasize importance of localized shielding of penetrations, pipes, etc

Nucl. Instrum. Meth. A806 (2016) 401–419, arXiv:1506.03547, PROSPECT Collaboration

PROSPECT AD Shielding

- local shielding next to reactor wall
- multi-layer passive shield:
 - water bricks, HDPE, borated HDPE, lead

AD-1 Multi-Layer Shield

Signal to Background Prediction

Prototype systems provide benchmarking of AD Monte Carlo

- Efficient PSD & neutron
- identification
- Multi-interaction & multi-particle identification
- Fiducialization

S/B better than 1:1 is predicted for PROSPECT AD. Rate and shape of residual IBD-like background can be measured during numerous reactor off periods.

PROSPECT Collaboration

HEISING-SIMONS FOUNDATION

PROSPECT

18

NERGY

Office of

Science

Supported by:

prospect.yale.edu

Lawrence Livermore National Laboratory

Conclusion

- New data are required to address the rate and spectrum reactor anomalies
- PROSPECT will
 - Probe favored region for eV-scale sterile neutrinos at >3 σ with 3 years of data
 - Measure the ²³⁵U v_e spectrum, addressing the observed spectral deviation, and providing new constraints on reactor antineutrino models complementary to current and future LEU measurements
- The PROSPECT R&D Program has:
 - developed LiLS detector technology that can mitigate reactor- and cosmogenic related backgrounds
 - Deployed multiple detectors at HFIR to validate models and operating procedures and prepare for full-size system deployment
 - Completed validation of system components for full scale production
- Antineutrino Detector construction is underway
- Installation expected in 2017

