

MORE RESULTS FROM THE OPERA EXPERIMENT

Mustafa Kamışcıoğlu - Middle East Technical University on behalf of the OPERA Collaboration

PANIC 2017 Beijing - Sep 1, 2017

THE OPERA COLLABORATION

26 institutions in 11 countries

http://operaweb.lngs.infn.it

THE OPERA EXPERIMENT

Oscillation Project with Emulsion tRacking Apparatus

Long baseline (730 km from CERN to LNGS) neutrino oscillation experiment in the CERN Neutrino to Gran Sasso (CNGS) v_{μ} beam

Main goal:

Direct detection of $v_{\mu} \rightarrow v_{\tau}$ oscillations in APPEARANCE mode

Beam parameters

$\langle E_{\rho} \rangle$		$400{ m GeV}$	
$\langle E_{\nu} \rangle$		$17{ m GeV}$	
Inte	eractic	on rates*	
$\overline{ u}_{\mu}/ u_{\mu}$	CC	2.1 %	
$ u_e/ u_\mu$	CC	0.89 %	
$\overline{ u}_e/ u_\mu$	CC	0.06 %	
$ u_{ au}/ u_{\mu}$	CC	$< 10^{-4} \%$	

OPERA Requires:

Long baseline for oscillation at the atmospheric scale High energy beam for **T** production High beam intensity and massive target for statistics Micrometric accuracy and resolution to identify short lived **T**'s

* Interaction rate at LNGS

THE OPERA DETECTOR

EMULSION CLOUD CHAMBER

EVENT ANALYSIS

I.Scan I5 emulsion films around stopping plate

2.Track follow-up to eliminate the background tracks

3.Find stopping point Search vertex topology

 $v_{\mathcal{T}}$ interaction detection

BACKGROUND SOURCES

$\nu_{\mathcal{T}}$ kinematical selection

variable	$\tau \to 1 h$	$\tau \to 3h$	$ au o \mu$	$\tau \rightarrow e$
lepton-tag		No μ or e at the	e primary vertex	
$z_{dec}~(\mu{ m m})$	[44, 2600]	< 2600	[44, 2600]	< 2600
$p_T^{miss}~({ m GeV}/c)$	< 1*	$< 1^{\star}$	/	/
$\phi_{lH} \ (\mathrm{rad})$	$> \pi/2^{\star}$	$>\pi/2^{\star}$	/	/
$p_T^{2ry}~({ m GeV}/c)$	$> 0.6(0.3)^*$	/	> 0.25	> 0.1
$p^{2ry}~({ m GeV}/c)$	> 2	> 3	> 1 and < 15	> 1 and < 15
$\theta_{kink} \; ({ m mrad})$	> 20	< 500	> 20	> 20
$m, m_{min}~({ m GeV}/c^2)$	/	> 0.5 and < 2	/	/

Kinematical selection

pT miss : vectorial sum of the transverse momenta of primaries

(except the parent) and daughters wrt beam direction

 p_T^{2ry} :the transverse momentum of the daughter wrt the parent direction.

$v_{\mathcal{T}}$ candidate events

$v_{\mathcal{T}}$ candidate events

P_{sum} : scalar sum of the measured momentum of all particles

DISCOVERY OF $v_{\mu} \rightarrow v_{\tau}$ APPEARANCE IN THE CNGS BEAM

Exposure	17.97 x 10 ¹⁹ p.o.t.
Interactions in the target	19505

Decay Channel	Signal Expectation $\Delta m^2 = 2.44 \times 10-3 \text{ eV}^2$	Total Background	Observed
τ → I h	0.52 ± 0.10	0.04 ± 0.01	3
τ →3h	0.73 ± 0.14	0.17 ± 0.03	
τ →μ	0.61 ± 0.12	0.004 ± 0.001	
т →е	0.78 ± 0.16	0.03 ± 0.01	0
Total	2.64 ± 0.53	0.25 ± 0.05	5

Probability of a background fluctuation = 1.1×10^{-7} No oscillation hypothesis excluded at **5.1** σ

OPERA

Δm^2_{23} and v_{τ} cross-section measurement

New strategy is defined in order to increase the number of ν_{τ} candidates.

NEW Minimum bias selection:

Variable	$\tau \to 1 h$	$\tau \to 3h$	$\tau \to \mu$	$\tau \to e$
$z_{dec}~(\mu m)$	$<\!\!2600$	$<\!\!2600$	$<\!\!2600$	$<\!\!2600$
$ heta_{kink} \ (rad)$	> 0.02	> 0.02	> 0.02	> 0.02
$p_{2ry} \ (GeV/c)$	>1	>1	> 1	>1
$p_{2ry}^T \ (GeV/c)$	> 0.15	/	>0.1	>0.1

New strategy:

- Minimum bias kinematical cuts
- Multivariate analysis: Boosted Decision Tree
- S/B reduced from 10 to 3

Channel	Expected Background			Exp. Signal	Observed	
	Charm	Had. re-interaction	Large μ -scat.	Total		
$\tau \to 1h$	0.15 ± 0.03	1.28 ± 0.38	—	1.43 ± 0.41	2.96 ± 0.59	6
au ightarrow 3h	0.44 ± 0.09	0.09 ± 0.03	—	0.53 ± 0.12	1.83 ± 0.37	3
$ au o \mu$	0.008 ± 0.002	—	0.02 ± 0.008	0.03 ± 0.01	1.15 ± 0.23	1
$\tau \to e$	0.035 ± 0.007	—	—	0.03 ± 0.007	0.84 ± 0.17	0
Total	0.63 ± 0.13	1.37 ± 0.41	0.02 ± 0.008	2.0 ± 0.5	6.8 ± 1.4	10

OPERA

Δm^2_{23} and v_{τ} cross-section measurement

$\nu_{\mu} \rightarrow \nu_{e}$ OSCILLATIONS

Observed v_e events: 35

Expected number of events: from v_e beam contamination: 31 ± 3 from background $\tau \rightarrow e$: 0.8 ± 0.2 from background π^0 mis-id : 0.5 ± 0.5 from $v_{\mu} \rightarrow v_e$ oscillation: 2.7 ± 0.3

Display of the reconstructed emulsion tracks of one of the ν_{e} candidate events.

Two tracks are observed at the neutrino interaction vertex.

One of the two generates an electromagnetic shower and is identified as an electron.

Reconstructed energy of the v_e events

The total number of expected events is 35 ± 3 compatible with the observed event. Allowing sin² (2 θ_{13}) to vary, we can set an upper limit of 0.22 at 90% C.L.

$\nu_{\mu} \rightarrow \nu_{e}$ IN 3+1 MODEL

Δm²₄₁ [eV²] v_e data is used to set limits on the oscillations parameters in presence of a fourth sterile neutrino. 10-1 $\sin^{2}(2v_{\mu e}) = 4|U_{\mu 4}|^{2}|U_{e4}|^{2}$ OPERA 99% C.L. 10-2 LSND 99% C.I MiniBooNE 99% C.L (ARMEN2 90% C.L 10-3 PRELIMINARY 10⁻² 10⁻¹ sin²20_{u0}

The exclusion plot for the parameters of the oscillation parameters in 3+1 scheme

An upper limit on the sin² $(2\theta_{\mu_e})=0.019$ can be set at large $\Delta m_{41} > 0.1 \text{ eV}^2$.

16

OPERA

AN EVENT WITH 2 SECONDARY VERTICES

Muonless event A primary and two secondary vertices found in emulsion Electromagnetic activity (γ 's) at the kink point.

ight longthe	Vertex ID	Parent	Daughters	$x~(\mu { m m})$	$y~(\mu { m m})$	$z \ (\mu m)$
ight lengths.	I (primary)	-	2, 4, 5, neutral	15077.0	59157.9	-33081.8
103 µm	II (secondary)	neutral	1, 3	15085.9	59149.9	-32979.2
: 1160 um	III (kink)	4	6	15073.9	59262.4	-31926.4

Track ID	p best fit $({\rm GeV}/c)$	68~%~p range (GeV/c)
1	2.1	[1.6; 3.1]
3	4.3	[3.1;7.1]
5	0.54	[0.45;0.68]
6 (daughter)	2.7	[2.1;3.7]

F

11:

Invariant masses at both secondary vertices larger than I GeV.

AN EVENT WITH 2 SECONDARY VERTICES

Dedicated simulations and Artificial Neural Networks (ANN) analysis performed to distinguish between possible interpretations .

OPERA

The most likely interpretation vertex II is originated by a charm decay and vertex III by tau decay into an hadron.

Sample	Expected events (10	$)^{-3})$
$\nu_{ au}$ CC + charm	44.5 ± 0.1	
$ u \text{ NC} + c \bar{c} \text{ pair} $	12.59 ± 0.02	
$ u_{\mu}~{ m CC} + { m two}~2{ m ry}$	4.0 ± 0.5	
$ u_{\mu} ext{ CC} + ext{charm} + 2 ext{ry}$	20.5 ± 0.5	Pop Event classified as
u NC + two 2ry	3.8 ± 0.3	a V CC interaction with charm production
$ u_{ au} ext{ CC } +2 ext{ry}$	9.0 ± 0.1	
Total	94.4	with a significance of 3.5 O

STUDY OF CHARGED PARTICLE MULTIPLICITY DISTRIBUTIONS

Approximate KNO scaling is valid for the charged hadrons multiplicity Data shows good agreement with approximate KNO scaling

http://arxiv.org/abs/1706.07930 Submitted to EPJ C

Useful to improve models of particle production which are used in Monte Carlo (MC) event generators.

ANNUAL MODULATION OF ATMOSPHERIC MUONS

CONCLUSIONS

- 5 ν_{τ} events found with 0.25 background.
- \Rightarrow Discovery of ν_{τ} appearance in the CNGS neutrino beam: 5.1 σ
- Minimum bias analysis to increase the number of v_{τ} candidate.
- \Rightarrow measurement of Δm^2_{23} . Preliminary results in agreement with PDG2016 at 1 σ
- $\Rightarrow V_{\tau}$ cross section (first measurement with V_{τ} only)
- Vµ→Ve oscillations: number of observed events in agreement with expected background and the standard oscillation signal
- Sterile neutrino constraints from $v_{\mu} \rightarrow v_{e}$ oscillations in the 3+1 flavour model

Non-oscillation Physics:

- Study of the multiplicity distribution of charged hadron particles in neutrino-lead interactions to improve models of particle production which are used in Monte Carlo (MC) event generators.
- Analysis of the annual modulation of atmospheric muons.

Thank you for your kind attention