

Recent results from Borexino and prospects for the SOX experiment

Laura Collica* for the Borexino/SOX Collaborations

* INFN Milano, Italy

21st Particles and Nuclei International Conference, September 1-5 2017, Beijing, China

The Borexino detector

Gran Sasso Laboratory, Italy (1400 m rock shielding, 3800 w.m.e.)

Light yield: ~500 photons/MeV

Hardware threshold: ~50 keV

Ultra-low radioactive background: over 10

orders of magnitude below typical radioactivity levels

Primary goal: real-time measurement of lowenergy solar neutrinos

2010

level

neutrino magnetic moment

Phase-I

• ⁷Be, pep flux

geo-neutrinos

limit on CNO flux

2007 Solar neutrinos:

(NMM)

Solar neutrinos

pp chain (~ 99% of the sun energy)

probes to test the Standard Solar Model (SSM), the Sun metallicity and the neutrino oscillations

Solar neutrinos @ Borexino

Detection principle: elastic scattering on electrons

 $\nu_x + e^- \rightarrow \nu_x + e^-$

Indistinguishable from the natural radioactivity...

6 cycles of scintillator purification (2010-2011)

→ extreme low background required!

⁸⁵Kr: reduced by ~4.6
²¹⁰Bi: reduced by ~2.3
²³⁸U: < 9.4 * 10⁻²⁰ g/g (95% C.L.)
²³²Th: < 5.7 * 10⁻¹⁹ g/g (95% C.L.)

+ ²¹⁰Po reduced by natural decay

Data selection

- ¹⁴C: rate constraint and synthetic pile-up
- ²¹⁴Bi-²¹⁴Po: with alpha/ß discrimination
- ¹¹C: Three-Fold-Coincidence (TFC) discrimination
- Ext. BG: radial distribution

[arXiv:1308.0443]

Seasonal modulation of the ⁷Be solar neutrino

3 methods used to analyse the periodical fluctuation on β -like signal from ⁷Be v_e:

- analytical fit to event rate
- Lomb-Scargle periodogram
- Empirical Mode Decomposition techniques

- period, amplitude, and phase of the time evolution of the signal are consistent with its solar origin: T= 1 y, eccentricity = 0.0168 +- 0.0031
- absence of an annual modulation is rejected at 99.99% C.L

[Astr. Phys. 92 (2017) 21]

Simultaneous spectroscopy of solar neutrinos

first global analysis of several solar neutrino components between 0.186 MeV and 2.927 MeV

Borexino Phasell dataset: Dec. 2011 - May 2016 exposure: 1291.51 days × 71.3 ton

<u>Maximise a binned likelihood through a</u> <u>multivariate approach (TFC-tagged and TFC-</u> subtracted energy spectrum, pulse shape, radial distribution)

2 complementary methods:

Analytical fit

- model of the detector response (6 free parameters)
- possibility to describe unknown time variations

Monte Carlo fit [arXiv:1704.02291]

- detailed MC modeling tuned on calibrations data (Phasel)
- sub% accuracy

[[]arXiv:1707.09279]

Simultaneous spectroscopy of solar neutrinos

Rate in cpd/100 t and Flux in cm⁻² s⁻¹

Solar ν	Borexino	B16(GS98)-HZ	B16(AGSS09)-LZ
рр	134 \pm 10 $^{+6}_{-10}$	131.0 ± 2.4	132.1 ± 2.3
	$(6.1\pm0.5~^{+0.3}_{-0.5}) imes10^{10}$	$5.98(1\pm0.006) imes10^{10}$	$6.03(1\pm0.005) imes10^{10}$
⁷ Be	48.3 \pm 1.1 $^{+0.4}_{-0.7}$	47.8 ± 2.9	43.7 ± 2.6
	$(4.99\pm0.13~^{+0.07}_{-0.10}) imes10^9$	$4.93(1\pm0.06) imes10^9$	$4.50(1\pm 0.06) imes 10^9$
pep (HZ)	$2.43 \pm 0.36 \ ^{+0.15}_{-0.22}$	2.74 ± 0.05	2.78 ± 0.05
	$(1.27\pm0.19~^{+0.08}_{-0.12}) imes10^8$	$1.44(1\pm 0.009) imes 10^8$	$1.46(1\pm0.009) imes10^{8}$
pep (LZ)	$2.65 \pm 0.36 \ ^{+0.15}_{-0.24}$	2.74 ± 0.05	2.78 ± 0.05
	$(1.39\pm0.19\ ^{+0.08}_{-0.13}) imes10^8$	$1.44(1\pm0.009) imes10^{8}$	$1.46(1\pm0.009) imes10^{8}$
CNO	< 8.1 (95% C.L.)	4.91 ± 0.56	3.52 ± 0.37
	< 7.9 $ imes$ 10 ⁸ 95% C.L.)	$4.88(1\pm0.11) imes10^8$	$3.51~(1\pm0.10) imes10^{8}$

- **pp** interaction rate obtained with a 30% better precision wrt previous results

- ⁷Be v known with a better precision than the theoretical predictions for HZ-LZ solar model
- strongest evidence of **pep** v (signal absence rejected at 5σ)
- current best limit on CNO v

Implications on the physics of the sun

- discrimination between HZ/LZ solar models is now dominated by theoretical uncertainties

- a weak hint towards the HZ hypothesis

[arXiv:1707.09279]

Neutrino survival probability Pee with Borexino

consistent with MSW-LMA (Mikheyev-Smirnov-Wolfenstein effect with Large Mixing Angle scenario) consistent with SSM predictions -> sun has been stable for the past 10⁵ years

[arXiv:1707.09279]

Update of the effective neutrino magnetic moment (NMM)

- minimal extension of SM: NMM proportional to neutrino mass

 $->\mu_v < 10^{-18} \mu_B \sim$ 7-8 orders of magnitude lower than existing experimental limits

- further extension of SM and new physics: NMM proportional to lepton mass

-> expectations reach the level of the the current experimental limits!

Neutrino-electron elastic scattering: most sensitive test for NMM search

$$\frac{d\sigma_{EM}}{dT_e}(T_e, E_\nu) = \pi r_0^2 \ \mu_{eff}^2 \left(\frac{1}{T_e} - \frac{1}{E_\nu}\right)$$

the spectrum of the scattered electron is influenced mostly at low E

⁷Be v: strong change of the shape (high sensitivity to NMM)

pp v: the change of the shape is almost equivalent to the change of normalisation

-> constraints on the sum of the solar neutrino fluxes (from radiochemical gallium experiments) is applied

Update of the effective neutrino magnetic moment (NMM)

SOX - Short distance neutrino Oscillations with boreXino

several experimental anomalies found in ve /anti-ve appearance/disappearance experiments

Accelerator anomaly: ~ 3.8 σ LSND: Appearance of anti- v_e in anti- v_μ beam Confirmed by MiniBooNE which registered v_e and v_μ beam

Gallium anomaly: ~ 2.8σ

Deficit observed in v_e coming from 51Cr and 37Ar

Reactor anti-v_e anomaly: $\approx 3.0\sigma$

Re-evaluation of reactor antineutrino spectra results. Observed rate deficit in all short-baseline (L = 10 - 100 m)

[PRD 88 (2013) 073008]

SOX - Short distance neutrino Oscillations with boreXino

several experimental anomalies found in ve /anti-ve appearance/disappearance experiments

L. Collica - New results from Borexino/SOX

SOX - setup

- 2 calorimeter setups to determine source activity (tested and fully functional)
- anti- v_e spectral measurements from 3 independent apparatus

Source Pros:

no source background, deep underground, known neutrino spectrum, small size

SOX - source transportation

Source Cons: very hard to produce, transport, authorise

transportation from Mayak to Gran Sasso Laboratory and within the Lab. planned in detail

the **source production** will be finished by the end of 2017 **data taking** will start at the latest April 2018 erc

SOX - detection mechanism and analysis

detection mechanism: $\overline{\nu}_e + p \rightarrow n + e^+$

→ prompt (e⁺) and delayed (n capture): clear coincidence signature

→ almost background free (20 events/yr)

two techniques:

total counts (rate analysis) standard disappearance experiment

the activity of the source and the anti-v_e spectrum must be known precisely!

spatial waves (shape analysis) oscillation pattern in (E,L) plane

the anti-v_e spectrum must be known but knowledge of the source activity not necessary!

SOX - Sensitivity

assuming: $\sigma=0.015$ on activity meas. $\sigma=0.03$ on spectrum meas.

0.1 <∆m² <5 eV² best sensitivity window

<u>rate + shape analysis:</u> <u>almost the whole anomaly region could be excluded</u>

SOX - calibration campaign

use well-tested Borexino calibration system:

- insertion of sources via interconnecting rods
- source location system composed of 6 CCD cameras looking for the position of a IR-LED attached to the source
- clean room and glove box for all manipulation to avoid perturbing the radio-purity of the detector

different source types and scans in the whole active volume

- <u>map energy and position response precisely</u> (²²²Rn and mono-energetic γ sources)
- <u>map the neutron and positron detection efficiency</u>, especially at the vessel border (²⁴¹Am-⁹Be, ⁶⁸Ga-⁶⁸Ge sources)
- tune the Monte Carlo
- test the new trigger for SOX

scheduled for this fall

Conclusion and prospects

- Borexino is now running into a precision spectroscopy phase, testing solar models and helping to solve the metallicity issue
- <u>Phase-II results have improved accuracy</u> compared to Phase-I thanks to new fitting tools and to the highly reduced background
- new upper limit on the effective neutrino magnetic moment (at the level of GEMMA's result)

further new results:

- testing neutrino excess from LIGO events (Gravitational Waves) [arXiv:1706.10176]
- neutrino-GRB correlation: best limits on all-flavours v fluence below 7 MeV [Astro. Phys. 86 (2017) 11]

Next steps:

- improved measurement of solar ⁸B at low threshold (>3MeV)
- struggle to improve CNO sensitivity
- investigation of anomalous oscillatory behaviour in neutrinos with SOX

The Borexino and SOX Collaborations

backup

FIT: systematic uncertainty sources

	pp		⁷ Be		pep	
Source of uncertainty	-%	+%	-%	+%	-%	+%
Fit method (analytical/MC)	-1.2	1.2	-0.2	0.2	-4.0	4.0
Choice of energy estimator	-2.5	2.5	-0.1	0.1	-2.4	2.4
Pile-up modeling	-2.5	0.5	0	0	0	0
Fit range and binning	-3.0	3.0	-0.1	0.1	1.0	1.0
Fit models (see text)	-4.5	0.5	-1.0	0.2	-6.8	2.8
Inclusion of 85 Kr constraint	-2.2	2.2	0	0.4	-3.2	0
Live Time	-0.05	0.05	-0.05	0.05	-0.05	0.05
Scintillator density	-0.05	0.05	-0.05	0.05	-0.05	0.05
Fiducial volume	-1.1	0.6	-1.1	0.6	-1.1	0.6
Total systematics (%)	-7.1	4.7	-1.5	0.8	-9.0	5.6

Update of the geo-neutrinos measurement

v⁻e produced by β decays of long-lived isotope in the interior of the Earth (²³⁸U, ²³²Th chains, and ⁴⁰K)

detection mechanism: inverse beta decay

 $\overline{\nu}_e + p \rightarrow n + e^+$

chondritic model is assumed: m(Th)/m(U) = 3.9 Log-Likelihood fit: Geo-neutrinos out of Reactor neutrinos dataset: Dec. 2007 - March 2015 exposure: 2055.9 days × 71.3 ton

A geo-neutrino signal from the mantle is obtained at 98% C.L.

[PRD92(2015)031101(R)]

SOX: source production, shielding and radioactive impurities

Strict constrains on the CeO₂ powder:

- γ rate: < 10⁻⁵ Bq/Bq w.r.t. ¹⁴⁴Ce
- *n* rate: $< 10^{-5}$ Bq/Bq w.r.t. ¹⁴⁴Ce (max 10⁵ s⁻¹)
- A long list of nuclei to check! (γ , α , ICPMS, n)
- Power from impurities 10^{-3} W/W w.r.t. ¹⁴⁴Ce

²²Na, ⁴⁴Ti-⁴⁴Sc, ⁴⁹V, ⁵⁴Mn, ⁵⁵Fe, ⁵⁷Co, ⁶⁰Co, ⁶³Ni, ⁶⁵Zn, ⁶⁸Ge-⁶⁸Ga, ⁹⁰Sr-⁹⁰Y, ⁹¹Nb, ^{93m}Nb, ¹⁰⁶Ru-¹⁰⁶Rh, ¹⁰¹Rh, ¹⁰²Rh, ^{102m}Rh, ^{108m}Ag, ^{110m}Ag, ¹⁰⁹Cd, ^{113m}Cd, ^{119m}Sn, ^{121m}Sn, ¹²⁵Sb, ¹³⁴Cs, ¹³⁷Cs, ¹³³Ba, ¹⁴³Pm, ¹⁴⁴Pm, ¹⁴⁵Pm, ¹⁴⁶Pm, ¹⁴⁷Pm, ¹⁴⁵Sm, ¹⁵¹Sm, ¹⁵⁰Eu, ¹⁵²Eu, ¹⁵⁴Eu, ¹⁵⁵Eu, ¹⁴⁸Gd, ¹⁵³Gd, ¹⁵⁷Tb, ¹⁵⁸Tb, ¹⁷¹Tm, ¹⁷³Lu, ¹⁷⁴Lu, ¹⁷²Hf-¹⁷²Lu, ¹⁷⁹Ta, ^{178m}Hf, ¹⁹⁴Os-¹⁹⁴Ir, ^{192m}Ir, ¹⁹³Pt, ¹⁹⁵Au, ¹⁹⁴Hg-¹⁹⁴Au, ²⁰⁴Tl, ²¹⁰Pb→²⁰⁶Pb, ²⁰⁷Bi, ²⁰⁸Po, ²⁰⁹Po, ²²⁸Ra→²⁰⁸Pb, ²²⁷Ac→²⁰⁷Pb, ²²⁸Th→²⁰⁸Pb, ²³²U→²⁰⁸Pb, ²³⁵Np, ²³⁶Pu-²³²U, ²³⁸Pu→²³⁰Th, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu-²⁴¹Am, ²⁴¹Am, ^{242m}Am-²³⁰Th, ²⁴³Cm→²³⁵U, ²⁴⁴Cm, ²⁴⁸Bk-²⁴⁴Am, ²⁴⁹Bk-²⁴⁹Cf, ²⁴⁸Cf, ²⁴⁹Cf, ²⁵⁰Cf, ²⁵²Cf, ²⁵²Es, ²⁵⁴Es-²⁵⁰Bk.

L. Collica - New results from Borexino/SOX

Calibration campaign - Details

Main reaction for SOX: **anti-v**_e + $p \rightarrow n+e^+$

→ higher energies (IBD threshold: 1.8 MeV) wrt solar neutrinos

- \rightarrow n and e+ are not point-like events
- → very clean signature: fiducial volume will be enlarged

border effects must be understood very well <u>map the detection efficiency</u>, especially at the vessel border

Calibration campaign - Details

Source	Type	E [MeV]	scan	
$^{241}\mathrm{Am}^{9}\mathrm{Be}(+^{\mathrm{nat}}\mathrm{Ni})$	n	0-9	on-axis, off-axis	
			radial, ϕ	
²²² Rn	α	5.5,6.0,7.4	on-axis, off-axis, ϕ	
	$ \gamma$	0-3.2	on-axis, off-axis, ϕ	
$^{68}{ m Ge} - ^{68}{ m Ga}$	β^+	0-1.9 (+1.02)	on-axis, off-axis	
			radial, ϕ	
85 Sr, 54 Mn, 65 Zn, 40 K	$ \gamma$	0.5, 0.8, 1.1, 1.5	on-axis	
⁶⁰ Co- ^{108m} Ag	γ	1.2-1.3, 0.4-0.6-0.7	on-axis	