

Neutrino-less Double Beta Decay study in CANDLES experiment

2017/Sep/02 PANIC2017 @ CNCC Beijing

> Takemoto Yasuhiro Osaka University RCNP for the CANDLES Collaboration

CANDLES Collaboration (~30 members)

Outline of the Talk

- Double Beta Experiment
- CANDLES Experiment
 - Background
 - > Detector Upgrade
 - > Current Limit
- R&D for Next/Future CANDLES

Double Beta Decay experiment

<u>Ονββ experiment w/ 48Ca</u>

$\stackrel{48}{\simeq} CaF_2 \operatorname{crystal} \operatorname{as} \operatorname{target} \operatorname{O} \nu \beta \beta}{\cong} \operatorname{Max} Q_{\beta\beta} \operatorname{@} 4.271 \operatorname{MeV}$

- ≧ ²³⁸U, ²³²Th, ⁴⁰K...
 - except Internal ²⁰⁸TI ($\beta + \gamma$)
- ~ 0 BG @ Qββ
- powerful in next generation
 - $\langle m_{\nu} \rangle \sim T^{-1/2} \sim M^{-1/2}$
 - c.f. $\sim M^{-1/4}$ (BG limit)
- Large phase space factor
- 😟 Low natural abundance (0.187%)
 - separated isotope is expensive (M\$/10g)
 - independent enrichment is required
 - high E res. (<1%) at low temp.
 - inevitable for 2ν vs 0ν
 - bolometer technique is required

CANDLES III experiment

6 PANIC2017

Calcium Fluoride for Studies of Neutrino and Dark Matters by Low Energy Spectrometer

@ Kamioka-mine (UG) 1km overburden (10⁻⁵μ)

① pure water (4x3m ϕ)

• passive shield

② PMT + light guide

- 10" (R7081) x12
- 13" (R8085) x36
- 20" (R7250) x14
- guide : ~93% ref @420nm

3 2.1m³ LS

- 4π active shield
- ~10ns pulse

(4) CaF₂ (pure) module x 96 : 305kg (350g ⁴⁸Ca) WLS : 280⇒420nm • ~1µs pulse ⇒ PSD

Signal in 4π active shield (Liquid Scintillator : LS)

<u>Rejection of external γ events with LS</u>

- Event discrimination by offline pulse shape analysis
 - Distinctive time constant : CaF₂(lusec) vs. LS (~10nsec)
- 500MHz Flash ADC provides fine structure

Background Spectrum in CANDLES III (2015)

26 crystal data (least ²³²Th)

Live Time	60.3 d
Exposure (⁴⁸ Ca)	5.73 kg ∙ d
Events in ROI	6
Expected BG	(n, γ): 3.4± 0.4 ²⁰⁸ TI :~1
Sensitivity (T1/2)	0.8 x 10 ²² yr

- high E BG remains after LS cut
- BG peaks ~ 7.5MeV
- seems to be produced from neutron capture on surrounding materials

 □ rock n ⇒ rock γ ⇒ CaF2
 □ rock n ⇒ SUS tank γ ⇒ CaF2

Understand (n, γ) with ²⁵²Cf & MC

9 PANIC2017

²⁵²Cf : put neutron source

on the SUS tank side or on the rock side

MC : detector simulation for (n, γ) reaction in the stainless tank and in the rock

 \square High E peaks are identified with ²⁵²Cf data.

 (n, γ) MC in rock and stainless tank well reproduced the real data.

⇒ \square main BG is identified and understood as (n, γ) reaction 76 ± 9 (stat.) events/yr/96 crystals

Detector Upgrade : neutron & gamma Shield

Target : ~1 event/yr/96crystals

> Pb Shield : γ shield (~1/120) (n, γ) @ Pb = O(10⁻¹) of @ SUS Top (7cm) Bottom (10cm) inside tank Side (10cm) + Barrel (12cm)

B Shield : n shield for SUS (~1/30) Top, Side (5mm 40wt% B4C sheet) outside Pb, inside SUS Bottom (liquid type) inside SUS

 (n, γ) BGs in CANDLES is estimated by MC to become ~1/80. Rock : 0.34±0.14 event/yr Tank : 0.4±0.2 event/yr

Pb Shield Construction

B Shield Construction

- Liquid B compound was poured on top of Pb shield for inner bottom shield.
- This is for both shielding neutron and waterproofing the bottom Pb blocks.
- No B and Pb elution into water have been confirmed by monthly water ICP-MS/OES examination.

Low BG material selection for near CaF2

- Radioassay with Ge detector
 ⇒ Al sleeve and O-ring are dirty
- Replacement by cleaner ones \Rightarrow ²³²Th for Al sleeve 0.4 \Rightarrow 0.1mBq/crystal
- Less than half background
 @ 3-3.5MeV region is expected.

Detector Cooling & Geomag. Compensation

Total ADC count

for large PMT was also installed.

Resolution progress by upgrade is confirmed.

Background after Detector Upgrade

BG measurement w/ Pb+B shield, low BG material, Cooling, Coil

- All upgrades successfully reduced BG by designed magnitude !
- Analytical internal BG reduction is next key for current CANDLES * only loose LS cut is applied on this plot

Internal BG in CANDLES : ²³²Th daughters

BG1: ²¹²BiPo sequential decay

- Total Max 5.3 MeV $\Rightarrow 0\nu\beta\beta$ BG
- Pileup in one event window (4usec)
- Pulse Shape Analysis removes this.

Pileup identification with $\Delta T > 20$ ns $\Rightarrow 95\%$ rejection efficiency. Remaining 5% contribution is currently negligible.

Internal BG in CANDLES : ²³²Th daughters

- current rejection eff. ~75%, acceptance~83%
- detection of Multi-crystal hit by escaped γ is under study.

Energy Spectra & Event Selection

LiveTime : 131 days

eliminary 27 crystals (²³²Th <10uBq/kg)

# event	95 crystals			27 crystals		
	QBB	4-5MeV	5.5-6.5MeV	QBB	4-5MeV	5.5-6.5MeV
LS Cut	115	257	8	12	23	1
²⁰⁸ TI Cut	19	49	6	3	6	1
Position Cut	10	34	6	0	2	1

No event in high purity crystals is confirmed.

Results

* ELEGANT IV Exposure : 4947kg \cdot d (2yr<) $0\nu\beta\beta$ eff. : 0.53 $T_{0\nu\beta\beta}^{1/2}$ ⁴⁸Ca : 5.8x10²² yr

 $\chi^2 \beta < 1.5, -3\sigma < SI < 1\sigma$ -2 σ <position cut<2 σ Pileup cut > 20ns 208 Tl cut -1 $\sigma < 0\nu\beta\beta$ window<2 σ

CANDLES is now exploring the forefront $T_{0\nu\beta\beta}^{1/2}$ in ⁴⁸Ca !

Future CANDLES

	CANDLES III+	CANDLES IV	CANDLES V
Crystal CaF2 / ⁴⁸ Ca	0.187% 305 kg / 0.35 kg	<mark>2%</mark> 2000 kg / 25 kg	<mark>50%</mark> 2000 kg / 610 kg
Energy Res.	6%	2.8% (required)	1.0% (required)
$< m_{\nu} >$ sensitivity	500 meV	80 meV	9 meV
Feature	Cooling CaF2 Low BG	Cooling CaF2 Low BG Massive ⁴⁸ Ca DH \Rightarrow IH	Massive ⁴⁸ Ca Bolometer IH \Rightarrow NH

both Enrichment & Bolometer techniques are necessary for future CANDLES

R&D: ⁴⁸Ca enrichment : MCCCE

• Multi-channel counter current electrophoresis

Boron Nitride plate 80mm $\phi \times 10$ mm, x69 0.8mm ϕ channel

PTEP

Prog. Theor. Exp. Phys. 2015, 033D03 (10 pages) DOI: 10.1093/ptep/ptv020

Calcium isotope enrichment by means of multi-channel counter-current electrophoresis for the study of particle and nuclear physics

- Separation using difference of migration speed between ⁴⁰Ca / ⁴⁸Ca.
- Principle was demonstrated.

- Reproducibility has been increased.
- Further study on parameter optimization
 - for High enrichment
 - Large amount
- Parallel R&D on crown-ether + microreactor, crown-ether resin + chromatography, laser isotope separation.

R&D : Scintillating Bolometer

- $2\nu\beta\beta$ is an inevitable BG for explorer IH, NH.
- Better energy resolution is necessary.
 Scintillator → Bolometer
- ²³⁸U α 4.27MeV will be BG.
- Simultaneous measurement of heat and scintillation enables to identify the PID(α/β)
 ⇒ Scintillating Bolometer
- The technique was already established. CRESST-II (CaWO4), Lucifer, AMoRE

Thermistor2 (Scintillation signal) Light detector Thermistor1 (heat signal) Reflection CaF, Crystal Film Heat signal → Scintillation signal 2cm cube (25g) x 4 CaF2(Eu) aF2(pure)

Dilution refrigerator

- Dilution refrigerator, developed for the dark matter search with LiF.
- Cooling power is 2µW @ 20mK

<u>Cooling Test</u>

- LN2 pre-cooling (77K)
- LHe pre-cooling (4K)
- 1K pot decompressing cooling (1K)
- ³He/⁴He mixed gas circulation (10mK)
- Detect Heat Signal

Other Preparation

- Ge wafer for light detector prepared
- 10cm Pb + 5cm Cu shield ready.

on going done

Summary

- CANDLES: 0νββ search by ⁴⁸Ca (350g) / CaF2 (305kg)
 > highest Q (4.3MeV), potential 0 BG observation, important for IH/NH
- Detector upgrade in 2015-2016
 - > Additional passive shield against largest BG : (n, γ)
 - ◆ Pb : 7 or 12 cm, B : 5mm $\rightarrow \rightarrow$ 10⁻² reduction
 - Low BG material replacement
 - Detector cooling & Geomagnetic Compensation coil
 - ♦ $17^{\circ}C \Rightarrow 4.9^{\circ}C$ → +47% light yield
- Remaining BG : ²⁰⁸Tl inside CaF2
 - Further analytical rejection study is on going
- Preliminary $T_{0\nu\beta\beta}^{1/2}$ limit on ⁴⁸Ca : 6.2x10²² yr (sensitivity 3.6x10²² yr) (ELEGANT IV > 5.8x10²² yr) > 3.5 exposure already, and continue to explore the forefront.
- Future CANDLES

⁴⁸Ca enrichment with MCCCE method, Scintillating Bolometer under study