Polarization measurements of hyperons and vector mesons with ALICE at the LHC

Sourav Kundu (for the ALICE collaboration) National Institute of Science Education and Research, INDIA

21st Particles and Nuclei International Conference 2017 IHEP, Beijing, China, 1-5 September, 2017

Initial conditions in heavy-ion collisions

Angular distribution of vector mesons and hyperons

K^{*0} Vector meson

- ✓ Mass: 896 MeV/c²
 ✓ Lifetime: 1.38 × 10⁻²³ s
- ✓ Spin: 1 ✓ Decays to K⁺ and π^- (B.R. ~ 66.6%)
- ✓Quark content (d,sbar)

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = N_0 \left[1 - \rho_{00} + \cos^2\theta^* (3\rho_{00} - 1) \right]$$

K. Schilling, P. Seyboth and G. Wolf, Nucl. Phys. B 15, 397 (1970)

- ρ_{00} = Element of spin density matrix
 - = $1/3 \rightarrow No$ spin alignment

Λ Hyperon

- ✓ Mass: 1115 MeV/c²
- ✓ Lifetime: 2.632 × 10⁻¹⁰ s
- Spin: 1/2
- Decays to p and π^- (B.R. ~ 63.9%)
- Quark content (u,d,s)

Quantization axis
Normal to production plane
Normal to event plane

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = \frac{1}{2} \left(1 + \alpha_{\mathrm{H}} |\vec{P}_{\mathrm{H}}| \cos\theta^* \right)$$

STAR: Phys.Rev.C 76, 024915 (2007)

Previous measurements

All results from the STAR Experiment

ALICE detector

ALICE: Int. J. Mod. Phys. A 29 1430044 (2014)

Global polarization of Λ hyperon

Data set and analysis

Collision system and energy	Pb-Pb at 2.76 TeV
Rapidity	<i>y</i> < 0.5
No. of events	~49 M
Collision centrality	5-15% , 15-50%
Hadrons	Λ -hyperons
Background	Side bands
Quantization axis	First order event plane from ZDC

Measurement observable

$$\frac{dW}{d\sin\theta_p^* \, d\phi_p^*} = \frac{1}{4\pi} \left(1 + \alpha_{\Lambda,\bar{\Lambda}} \, |\vec{P}_{\rm H}| \cos\theta_p^* \right)$$

Angles are of daughter proton in rest frame of hyperon

Component perpendicular to reaction plane and averaged over all events

$$P_{\Lambda,\bar{\Lambda}} = \frac{8}{\pi \alpha_{\Lambda,\bar{\Lambda}}} \times \frac{\left\langle \sin(\phi_{p}^{*} - \psi_{\rm EP}^{(1)}) \right\rangle}{R_{\rm EP}^{(1)}}$$

* Statistical uncertainty

$$\approx \frac{8}{\pi \alpha_{\Lambda,\bar{\Lambda}}} \times (2R_{\rm EP}^{(1)}\sqrt{\#\rm hyperons})^{-1}$$

Event plane using the two neutron ZDCs

Signal extraction and EP resolution

Hyperon polarization measurements: p_{T} dependence

p_{T} integrated results

5-15%
$$P_{\bar{\Lambda}}(\%) = -0.01 \pm 0.13(\text{stat}) \pm 0.04(\text{syst})$$

$$P_{\bar{\Lambda}}(\%) = -0.09 \pm 0.13(\text{stat}) \pm 0.08(\text{syst})$$

$$P_{\bar{\Lambda}}(\%) = -0.08 \pm 0.10(\text{stat}) \pm 0.04(\text{syst})$$

$$P_{\bar{\Lambda}}(\%) = -0.08 \pm 0.10(\text{stat}) \pm 0.04(\text{syst})$$

$$P_{\bar{\Lambda}}(\%) = 0.05 \pm 0.10(\text{stat}) \pm 0.03(\text{syst})$$

$$9$$

✓ $P_{\rm H}$ consistent with zero within 0.15 % for Pb-Pb collisions at midrapidity for $\sqrt{s_{\rm NN}}$ = 2.76 TeV in ALICE @ LHC

 \checkmark 1 σ significance for combined Λ and anti- Λ results

• 10 times more event statistics needed for a 3σ significance result

Spin alignment of K^{*0} vector meson

Data set and analysis

pp collisions

Collision system and energy	pp at 13 TeV, Minimum bias
Rapidity	<i>y</i> < 0.5
No. of events	~ 43 M
Hadrons	K*0
Background	Mixed events
Efficiency x acceptance	Corrected
Quantization axis	Production plane

Heavy-ion collisions

Collision system and energy	Pb-Pb at 2.76 TeV			
Rapidity	<i>y</i> < 0.5			
No. of events	~ 14 M			
Collision centrality	10-50% (K*º), 20-40% (K ^o _s)			
Hadrons	K^{*0} and K^0_s			
Background	Mixed events			
Efficiency x acceptance	Corrected			
Quantization axis	Production plane			

Goal: Measure dN/dcos θ^* vs. cos θ^* and extract ρ_{00} value as a function of $p_{\rm T}$ for K^{*0}.

Reconstruction of K^{*0} in pp collisions at ALICE

Same event (sig+bkg) and mixed event (bkg) distributions

Same event distribution after mixed event background subtraction

Yield is the area under Breit-Wigner distribution

Reconstruction of K^{*0} in Pb-Pb collisions at ALICE

mixed event (bkg) distributions

Same event distribution after mixed event background subtraction

Angular distribution

Two parameters (N_0 and ρ_{00}) fit to $\cos\theta^*$ distributions measured in different $p_{\rm T}$ bins

15

Spin density matrix element (ρ_{00}) measurements

pp collisions:
$$\rho_{00} = 1/3$$

Pb-Pb collisions: ρ_{00} values about 2.5 σ below 1/3 for $0.4 \le p_T < 1.2$ GeV/c and 1.4 σ for $1.2 \le p_T < 1.8$ GeV/c

Summary of spin alignment results

• ρ_{00} < 1/3 by about 2.5σ for the lowest p_T range (0.4-1.2 GeV/c) studied, about 1.4σ for the p_T range (1.2-2.4 GeV/c) and consistent with 1/3 for higher p_T in Pb-Pb collisions at √s_{NN} = 2.76 TeV in ALICE @ LHC

• $\rho_{00} \sim 1/3$: Spin alignment **not** observed in proton-proton collisions at 13 TeV

✓ ρ_{00} ~ 1/3 (within systematic errors) : Spin alignment **not** observed for K⁰_s (spin 0) in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

Outlook

✓ Analysis with $\sqrt{s_{_{NN}}} = 5.02$ TeV Pb-Pb data with higher statistics underway ✓ Centrality dependence of $\rho_{_{00}}$ study ongoing ✓ Spin alignment studies with respect to event plane ongoing

BACK UP

Feed-down correction

A majority of Λ are feed-down daughters of heavier particles (the very same for $\overline{\Lambda}$):

$X \rightarrow \Lambda + \dots$ channel	$Br(\Lambda +)$, %	fraction $f_{\rm X}$	$4/3 \times s(s+1)$	spin transfer $t_{\rm X}$
$\Sigma^0 \rightarrow \Lambda + \gamma$	100	0.3 ± 0.2	1	-1/3
$\Sigma(1385)^{\pm,0} \rightarrow \Lambda + \pi^{\pm,0}$	87	0.3 ± 0.2	5	1/3
$\Omega^- ightarrow \Lambda + K^-$	67.8	< 0.17	5	1/3
$\Xi^{\pm,0} ightarrow \Lambda + \pi^{\pm,0}$	pprox 100	< 0.23	1	0.900 or 0.927

$$P_{\Lambda,\bar{\Lambda}}^{\text{meas}} = (1 - \sum_{X} f_{X}) P_{\Lambda,\bar{\Lambda}}^{\text{true}} + \sum_{X} f_{X} \times t_{X} \times P_{X}^{\text{true}}$$

Assuming the thermal vorticity model (P_X^{true} are proportional to s(s + 1), where s is particle's spin

$$P_{\Lambda,\bar{\Lambda}}^{\text{true}} = P_{\Lambda,\bar{\Lambda}}^{\text{meas}} \times \left(1 - \frac{4}{3}f_{\Sigma^0} + 0.87 \times \frac{2}{3}f_{\Sigma(1385)} + 0.68 \times \frac{2}{3}f_{\Omega^-} - 0.1f_{\Xi}\right)^{-1}$$

 Ω^- and Ξ contributions are negligible, the contribution of $\Sigma(1385)$ is large only due to the model-dependent coefficient 5. A conservative estimate:

 $[\Lambda \text{ and } \overline{\Lambda} \text{ polarization scale feed-down}] = (1 - 4/3 \times f_{\Sigma^0})^{-1} = 1.7 \pm 0.5.$

F. Becattini, I. Karpenko, M. Lisa, I. Upsal and S. Voloshin, arXiv:1610.02506 [nucl-th]