

By Craig Nagy

Latest T2K Neutrino Oscillation Results

Xianguo LU/ 卢显国 University of Oxford on behalf of the T2K Collaboration Particles and Nuclei International Conference 2017 (PANIC2017) Beijing, 2 September 2017

Outline

- Neutrino oscillations and the T2K experiment
- Joint oscillation analysis with v_{μ} , v_{e} , v_{μ} , and v_{e} samples
- Summary

CP-odd term in appearance channels allow extraction of δ_{CP} using neutrino and anti-neutrino beams, up to ±30% effect at T2K

Crossed arrays of 9-ton iron-scintillator detectors

- Monitor neutrino beam stability and beam spatial profile
- → estimate beam flux uncertainty
- → stand-alone cross-section measurements

Near detector: ND280 Far detector: SK

T2K off-axis near detector (ND280)

T2K off-axis near detector (ND280)

Tracker:

- FGD: Fine-Grained Detector
 - 1. plastic scintillator $C_8^{}H_8^{}$

target

- 2. $C_8H_8 + H_2O$ target
- Time Projection Chamber (TPC)
- constrain beam flux and cross section for oscillation analysis
- stand-alone neutrino interaction measurements

T2K far detector: Super-Kamiokande

- 50 kt water-Cherenkov
- 11129 20-inch PMTs in inner detector; 1885 8-inch PMTs in outer veto detector
 → time and amplitude of Cherenkov light

SK event reconstruction

NEW since 2016 summer: New reconstruction algorithm: fiTQun (likelihood-based) Re-optimizing fiducial volume: ~30% increase in effective statistics

SK event reconstruction

NEW since 2016 summer: New reconstruction algorithm: fiTQun (likelihood-based) Re-optimizing fiducial volume: ~30% increase in effective statistics

SK event reconstruction

NEW since 2016 summer: New reconstruction algorithm: fiTQun (likelihood-based) Re-optimizing fiducial volume: ~30% increase in effective statistics

- Larger Towall = finer sampling of ring = better reconstruction
- Optimize cuts accounting for statistical and systematic errors

Outline

- Neutrino oscillations and the T2K experiment
- Joint oscillation analysis with v_{μ} , v_{e} , v_{μ} , and v_{e} samples
- Summary

v-mode FGD1 p_u

•

Near Detector Samples

Near Detector Fit – post-fit

v-mode FGD1 p.

Event distributions and oscillation fit

- Reconstructed neutrino energy distributions at Super-Kamiokande
 - Dotted: data; histogram: oscillation fit results, p-value 0.42

Event distributions and oscillation fit

• v_{μ} rate lower than fit, consistent with uncertainties.

Event distributions and oscillation fit

- $CC1\pi v_{e}$ rate: 15 events observed vs. 6.92 maximum prediction
 - P-value 0.12 for upward or downward fluctuation in at least 1 of 5 samples

Atmospheric parameter constraints

- Fit normal and inverted hierarchies separately
- Final systematics pending, possible additional contribution from interaction models (no significant impact on δ_{CP})

Appearance parameter constraints

- Left: T2K best-fit result and confidence intervals compared to PDG 2016: consistent $\sim v$ data bring in δ_{CP} -sensitivity
- Right: T2K results with reactor constraint (PDG 2016), contour range much reduced.

CCQE-like v_{e} and \overline{v}_{e} rate compared to $\delta_{CP}=0$ predictions:

- Excess in neutrino (top)
- Deficit in antineutrino (bottom)

Percentage errors on predicted <u>event rate ratio</u> between v_e and \overline{v}_e samples: relevant for δ_{CP} extraction

SK detector	SK FSI+SI+PN	ND280 constrained flux & xsec	$\sigma(v_e)/\sigma(v_e)$	ΝC1γ	NC other	Oscillation parameter variation	Total systematic error
1.60	1.57	2.50	3.03	1.49	0.18	0.79	4.85

Percentage errors on predicted <u>event rate ratio</u> between v_e and v_e samples: relevant for δ_{CP} extraction

SK detector	SK FSI+SI+PN	ND280 constrained flux & xsec	$\sigma(v_e)/\sigma(v_e)$	ΝC1γ	NC other	Oscillation parameter variation	Total systematic error
1.60	1.57	2.50	3.03	1.49	0.18	0.79	4.85

ND280 constraint on flux & cross section, reducing error from 13% to 3%.

Percentage errors on predicted <u>event rate ratio</u> between v_e and $\overline{v_e}$ samples: relevant for δ_{CP} extraction

SK detector	SK FSI+SI+PN	ND280 constrained flux & xsec	$\sigma(v_e)/\sigma(v_e)$	NC1γ	NC other	Oscillation parameter variation	Total systematic error
1.60	1.57	2.50	3.03	1.49	0.18	0.79	4.85

ND280 constraint on flux & cross section, reducing error from 13% to 3%.

Don't precisely measure $\sigma(v_e)$ and $\sigma(v_e)$ in ND280. Apply a theoretically motivated error based on Phys.Rev. D86 (2012) 053003.

Measurement of $\boldsymbol{\delta}_{_{CP}}$

Percentage errors on predicted <u>event rate ratio</u> between v_e and $\overline{v_e}$ samples: relevant for δ_{CP} extraction

SK detector	SK FSI+SI+PN	ND280 constrained flux & xsec	$\sigma(v_e)/\sigma(v_e)$	ΝC1γ	NC other	Oscillation parameter variation	Total systematic error
1.60	1.57	2.50	3.03	1.49	0.18	0.79	4.85

ND280 constraint on flux & cross section, reducing error from 13% to 3%.

Don't precisely measure $\sigma(v_e)$ and $\sigma(v_e)$ in ND280. Apply a theoretically motivated error based on Phys.Rev. D86 (2012) 053003.

Neutral current (NC) interactions not constrained by ND280. Theoretical models constrained by external measurements.

Measurement of $\boldsymbol{\delta}_{_{CP}}$

Percentage errors on predicted <u>event rate ratio</u> between v_e and $\overline{v_e}$ samples: relevant for δ_{CP} extraction

SK detector	SK FSI+SI+PN	ND280 constrained flux & xsec	$\sigma(v_e)/\sigma(v_e)$	ΝC1γ	NC other	Oscillation parameter variation	Total systematic error
1.60	1.57	2.50	3.03	1.49	0.18	0.79	4.85

ND280 constraint on flux & cross section, reducing error from 13% to 3%.

Don't precisely measure $\sigma(v_e)$ and $\sigma(v_e)$ in ND280. Apply a theoretically motivated error based on Phys.Rev. D86 (2012) 053003.

Neutral current (NC) interactions not constrained by ND280. Theoretical models constrained by external measurements.

Total error 4.85% on event rate ratio v_{e} / \overline{v}_{e} (10% by design).

Measurement of $\boldsymbol{\delta}_{_{CP}}$

Best fit point: -1.83 radians in Normal Hierarchy 2σ CL interval:

Normal Hierarchy: [-2.98, -0.60] radians Inverted Hierarchy: [-1.54, -1.19] radians CP conserving values 0, π both fall outside 2σ CL intervals

Outline

- Neutrino oscillations and the T2K experiment
- Joint oscillation analysis with v_{μ} , v_{e} , v_{μ} , and v_{e} samples
- Summary

Summary

- **NEW** since 2016 summer:
 - Doubled neutrino-mode statistics
 - New reconstruction and event selection at SK: effective improvement in statistics by ~30%
 - Improvements to neutrino interaction model
- Updated oscillation parameter estimates
 - CP conserving values of δ_{CP} are disfavored at 2σ level.
- T2K upgrade to collect 20×10^{21} POT and achieve 3σ (in case of favorable true values of δ_{CP}) sensitivity to exclude CP conserving values.

谢谢!

CP-odd term in appearance channels allow extraction of δ_{CP} using neutrino and anti-neutrino beams, up to $\pm 30\%$ effect at T2K – unique opportunities for experiments with accelerator neutrinos

Off-axis neutrino beams: Reduce dependence on pion energy \rightarrow narrow-band

Spectrum peak at maximum disappearance @SK

T2K off-axis near detector (ND280)

P0D: Pi0 Detector contains H_2O targets

Tracker:

FGD: Fine-Grained Detector
1. plastic scintillator C₈H₈

target

- 2. $C_8 H_8 + H_2O$ target
- Time Projection Chamber (TPC)

Electromagnetic Calorimeter (ECAL): surrounding P0D and tracker

Side Muon Range Detector: in magnet yokes

- constrain beam flux and cross section for oscillation analysis
- stand-alone neutrino interaction measurements

Will be addressed in future by 4π sample, hadronic recoil, ND upgrade

44

END