

Top quark mass and properties measurements with the ATLAS detector

Beijing, China, September 2017

María Moreno Llácer (CERN), on behalf of the ATLAS Collaboration

Contents

TOP QUARK MASS

* Direct measurements / template methods (measuring "Monte Carlo mass")

- * Standard channels: single lepton (7 TeV), dilepton (8 TeV) and all hadronic (8 TeV)
- * Indirect measurements aiming to measure m_{top} in a well-defined scheme ("pole mass")

TOP QUARK PROPERTIES

top quark decay width top quark couplings

- to W boson \rightarrow W helicity measurements
- to gluons \rightarrow probe spin correlations
- to photons \rightarrow top quark electric charge (tt+ γ)
- to Z boson \rightarrow top quark weak isospin (tt+Z/W)
- to Higgs boson → top quark Yukawa coupling [covered in Higgs talks]

OUTLOOK

All ATLAS results on top quark physics can be found in: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u> Only a selection of latest measurements is presented. Charge asymmetry and CP violation in top quark decays are not shown due to time constraints.

Top mass measurement: template method – single lepton

Single lepton channel, $\sqrt{s} = 7$ TeV, 4.7 fb⁻¹ Selection: one lepton (e/µ), E_{T,miss}, ≥4 jets, ≥1 *b*-tagged jet (75% eff.) Reconstruction: kinematic likelihood fit (using *b*-tagging info.)

Template fit (3D) using $\mathbf{m}^{reco}_{top} = f(\mathbf{m}_{top}, \mathbf{JSF}, \mathbf{bJSF}),$ $\mathbf{m}^{reco}_{W} = f(\mathbf{JSF}), \text{ and}$ $\mathbf{R}^{reco}_{bq} = f(\mathbf{b}\mathbf{JSF}) = \Sigma p_T(\mathbf{b})/\Sigma p_T(q)$ with a weak \mathbf{m}_{top} dependence

María Moreno Llácer – Top quark mass and properties measurements

Top mass measurement: template method – single lepton

Single lepton channel, $\sqrt{s} = 7 \text{ TeV}$, 4.7 fb⁻¹ Selection: one lepton (e/µ), E_{T,miss}, ≥4 jets, ≥1 *b*-tagged jet (75% eff.) Reconstruction: kinematic likelihood fit (using *b*-tagging info.)

Template fit (3D) using $m^{reco}_{top} = f(m_{top}, JSF, bJSF)$,

- Main uncertainties: JES, tt modeling.

- Improvements wrt. 2D-fit: bJES 0.88 GeV (2D) $\rightarrow 0.06$ GeV (3D)

Eur. Phys. J. C75 (2015) 330

Top mass measurement: template method – dilepton ch.

Dilepton channel, $\sqrt{s} = 8$ TeV, 20.2 fb⁻¹

1/9/17

Selection: two OS leptons, Z-mass veto, ≥ 2 jets, ≥ 1 *b*-jet (70% eff.)

take 2 b-jets with highest b-tag weight,

assume lowest average m_{lb} = correct pairing

enough statistics \rightarrow further quaility cuts: p_T of lb system > 120 GeV

Uncertainty vs. p_{T,Ib}

María Moreno Llácer – Top quark mass and properties measurements

Top mass measurement: template method – dilepton ch.

Dilepton channel, $\sqrt{s} = 8$ TeV, 20.2 fb⁻¹

Selection: two OS leptons, Z-mass veto, ≥ 2 jets, ≥ 1 *b*-jet (70% eff.)

lowest average m_{lb} = correct pairing

 p_T of lb system > 120 GeV

Template fit using **m**_{lb} Gauss+Landau function for signal, Landau for background

Phys. Lett. B761 (2016) 350

Dilepton 8 TeV: m_{top} = 172.99 ± 0.41 (stat) ± 0.74 (syst) GeV 0.5% rel. unc. (most precise single meas.)

Comb. dilepton 7+8 TeV & single lepton 7 TeV: m_{top} = 172.84 +- 0.34 (stat) +- 0.61 (syst) GeV 0.4% rel. unc. (improvement by 17%) correlations of estimators for all syst. unc. evaluated

Top mass measurement: template method – all hadronic

All hadronic channel, $\sqrt{s} = 8 \text{ TeV}$, 20.2 fb⁻¹ Selection: 0 leptons, $E_{T,miss} < 60 \text{ GeV}$, ≥ 6 jets (≥ 5 with $p_T > 55 \text{ GeV}$), $\geq 2 b$ -jets dPhi(b_i, b_j) > 1.5, <dPhi(b, W)> > 2.0 Reconstruction: χ^2 to select best permutation & cut $\chi^2 < 11$

Multijet bkg. estimation: data-driven method

Template fit using $R_{3/2} = m_{jjj}/m_{jj} = m_{bqq}/m_{qq}$ Novosibirsk + Landau function

Two $R_{3/2}$ measurements per event ($\rho=0.59$) taken into account in final m_{top} stat. unc. Dominant uncertainties:

JES (0.60 GeV), bJES (0.34 GeV) and hadronisation (0.64 GeV).

arXiv:1702.07546

All hadronic 8 TeV: m_{top} = 173.72 ± 0.55 (stat) ± 1.01(syst) 0.7% rel. unc. 40% improvement compared to 7 TeV result

m_{top}^{pole} from lepton and dilepton differential cross-sections

Dilepton channel, $\sqrt{s} = 8$ TeV, 20.2 fb⁻¹ Selection: e+ μ OS, Z-mass veto, ≥ 2 jets, ≥ 1 *b*-tagged jet ATLAS-CONF-2017-044

Observables: lepton ($p_{T,I}$, $|\eta_I|$, $p_{T,e}$ + $p_{T,m}$, $E_{,e}$ + $E_{,m}$) & dilepton ($p_{T,em}$, m_{em} , $|y_{em}|$, $\Delta \phi_{em}$) diff. dist.

→ Insensitive to detail of modelling the hadronic part of the decay Pole mass extraction from template fits (NLO+PS samples), and

from fixed-order predictions (MCFM samples with diff. PDF)

*m*_{top}^{pole} from lepton and dilepton differential cross-sections

Dilepton channel, $\sqrt{s} = 8$ TeV, 20.2 fb⁻¹ Selection: e+ μ OS, Z-mass veto, ≥ 2 jets, ≥ 1 *b*-tagged jet

1/9/17

ATLAS-CONF-2017-044

Observables: lepton ($p_{T,I}$, $|\eta_I|$, $p_{T,e}$ + $p_{T,m}$, $E_{,e}$ + $E_{,m}$) & dilepton ($p_{T,em}$, m_{em} , $|y_{em}|$, $\Delta \phi_{em}$) diff. dist.

María Moreno Llácer – Top quark mass and properties measurements

Channel (\sqrt{s})	Value	Stat	Model	Background	Experimental	Total
All-jets (8)	173.72	0.55	0.70 ± 0.16	0.19	0.71 ± 0.04	1.15 (0.66 %)
Lepton + jets (7)	172.33	0.75	0.53 \pm 0.11	0.31 \pm 0.00	0.82 \pm 0.08	1.27 (0.74 %)
Dilepton (8)	172.99	0.41	0.35 \pm 0.09	0.08 \pm 0.01	0.64 \pm 0.04	0.85 (0.49 %)

Summary of latest "direct MC mass measurements"

(Experimental uncertainties) ~ (modelling uncertainties)

- Worthwhile trying other mass reconstruction methods than direct mass
- New approaches in standard and alternative channels in template method: single top, J/ψ in final state, soft muon tagger, secondary vertices with leptons, MVAs, etc.
- Other approaches to measure pole mass: tt+jets or 2D differential distributions
- Need more control of event generators e.g. parton shower, hadronisation, ISR/FSR • **Precise** (and **in-situ**) calibrations of the energy

scale of inclusive jets (**JES**) and the relative *b*-to-light-jet energy scale (**bJES**) are vital for precise measurements of m_{ton}

 $t\bar{t} \rightarrow (b e \nu) (b q q), M(qq) = m_W, M(bqq) = m_{top}$

Top width direct measurement (model independent)

María Moreno Llácer – Top quark mass and properties measurements

1/9/17

Top quark couplings

Top quark couples to other SM fields through its **gauge and Yukawa interactions**. $t \rightarrow Wb$ coupling measured already at the Tevatron.

High statistics at the LHC: *tt*+bosons (γ , *Z*, *W* and *H*) becomes available!!

- * Observation of $tt+\gamma/Z/W$ processes by both ATLAS and CMS with LHC Run1 data.
- * Not yet for *tt*+*H* process but getting close... (Run1 LHC Higgs combination: 4.4 σ)

1/9/17

Top coupling to W boson (Wtb vertex)

1/9/17 María Moreno Llácer – Top quark mass and properties measurements

Top coupling to W boson: W helicity fractions in tt events

EPJC 77 (2017) 264 Test V-A structure via angular observables $\rightarrow W$ helicity fractions W bosons from top quark decays \rightarrow 3 possible polarizations: longitudinal, left and right handed $\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^* \right) F_0 + \frac{3}{8} \left(1 - \cos\theta^* \right)^2 F_L + \frac{3}{8} \left(1 + \cos\theta^* \right)^2 F_R$ down-type fermior θ_{l}^{*} angle between down-type fermion (charged lepton or down-type quark) from W W^+ and reversed direction of top quark, both in the W boson rest frame. Single lepton ch., $\sqrt{s} = 8$ TeV, 20.2 fb⁻¹ $F_0 = 0.687 \pm 0.005$ NNLO QCD calculation Event reconstruction with KLfitter $F_1 = 0.311 \pm 0.005$ Phys.Rev.D81:111503,2010 Helicity fractions extracted using template fit $F_{\rm P} = 0.0017 \pm 0.0001$ Two analyzers: leptonic and hadronic Leptonic analyser (most precise) .Leptonic: $[e+\mu] \times [\geq 2b] \rightarrow \text{most sensitive}$ $F_0 = 0.709 \pm 0.012$ (stat.+bkg.norm.) ± 0.015 (syst.) ·Hadronic: $[e+\mu] \times [1b + \ge 2b]$ $F_1 = 0.299 \pm 0.008$ (stat.+bkg.norm.) ± 0.013 (syst.) Overall combination: similar to leptonic F_{R} = -0.008 ± 0.006 (stat.+bkg.norm.) ± 0.012 (syst.) 0.18 ATLAS Simulation Prelimin $\rho_{0,L} = -0.55, \ \rho_{0,R} = -0.75, \ \rho_{L,R} = +0.16$ Arbitrary L Leptonic analys Main uncertainties: JES, JER, signal modelling 0.12 0.1 Anomalus 95% CL limit 0.08 coupling 0.06 $Re(V_R)$ [-0.24, 0.31] 0.04 [-0.14, 0.11] $Re(q_1)$ 0.02 6 -0.4 -0.2 0 ($Re(g_{R})$ [-0.02, 0.06], [0.74, 0.78] cos θ' 1/9/17 María Moreno Llácer – Top guark mass and properties measurements 14

Top coupling to gluon

1/9/17 María Moreno Llácer – Top quark mass and properties measurements

Top quark coupling to gluon: probe spin correlations

María Moreno Llácer – Top quark mass and properties measurements

1/9/17

Top quark coupling to gluon: probe spin correlations

 $\frac{1}{\sigma}\frac{d\sigma}{d(cos\theta_{+}^{n}cos\theta_{-}^{n})}$

.4

.2

0.8F

0.6

0.4

Data Pred. ATLAS

δ(ΣC)~8-17%

vs = 8 TeV, 20.2 fb

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

POWHEG-hva+PYTHIA6

 $\cos\theta_{\perp}^{n}\cos\theta_{\perp}^{r}$

JHEP 03 (2017) 113

Top polarisation~0 δB ~3-4%

Unfold $\cos\theta^{a,b_{\pm}}$ & $\cos\theta^{a_{+}}\cos\theta^{b_{-}}$ with Bayesian scheme, marginalize sys \downarrow $C(a,b) = -9\langle\cos\theta^{a}_{+}\cos\theta^{b}_{-}\rangle$ $B^{a} = 3\langle\cos\theta^{a}\rangle$

δC/C~20-30%

1/9/17 María Moreno Llácer – Top quark mass and properties measurements

Top coupling to $\gamma/Z/H$ bosons

Top coupling to photon: $tt+\gamma$

1/9/17

María Moreno Llácer – Top quark mass and properties measurements

	Process	tt decay	Boson decay	Channel
Many experimental signatures. Most sensitive channels explored in latest ATLAS results	$t\bar{t}W^{\pm}$	$\begin{array}{l}(\mu^{\pm}\nu b)(q\bar{q}b)\\(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)\end{array}$	$\mu^{\pm} u\ \ell^{\pm} u$	SS dimuon Trilepton
(3.2fb ⁻¹ , 2015 data): EPJC 77 (2017) 40	$t\bar{t}Z$	$\begin{array}{c} (\ell^{\pm}\nu b)(q\bar{q}b)\\ (\ell^{\pm}\nu b)(\ell^{\mp}\nu b) \end{array}$	$\ell^+\ell^-\\\ell^+\ell^-$	Trilepton Tetralepton

Sample statistics, S/B ratio and dominant backgrounds vary across different channels for each of them, several SRs (lepton flavour/charge, nJets, nBjets) and CRs (*WZ*, *ZZ*)

→ Cross-sections obtained from combined profile likelihood fit to signal and control regions

ttW cross section [pb]

$\Delta\sigma/\sigma$ (%),	tt+Z	tt+W	∧Uncertainty	$\sigma_{t\overline{t}Z}$	$\sigma_{t\overline{t}W}$
Significance			/ Luminosity	2.6%	3.1%
ATLAS 2012	32%, 4.2σ	26% , 5.0σ	/ Reconstructed objects	8.3%	9.3%
CMS 2012	27% 610	210/ 190	/ Backgrounds from simulation	5.3%	3.1%
	27 /0, 0.40	3170, 4.00	/ Fake leptons and charge misID	3.0%	18.7%
ATLAS 2015	ATLAS 2015 32%, 3.90 or		Signal modelling	2.3%	4.2%
	(31% stat.)	(48% stat.)	Total systematic	11%	22%
CMS 2015+2016	14%, 9.9σ	15%, 5.5 σ	Statistical	31%	48%
	(stat ~syst. unc.)	(stat ~syst. unc.)	Total	32%	53%

1/9/17

María Moreno Llácer – Top quark mass and properties measurements

Flavour changing neutral currents

1/9/17 María Moreno Llácer – Top quark mass and properties measurements

Run I LHC top FCNC searches

FCNC are forbidden in SM at tree level, strongly suppressed by GIM mechanism at higher orders → Powerful probe for new physics BSM can enhance FCNC production.

María Moreno Llácer – Top quark mass and properties measurements

1/9/17

FCNC $t \rightarrow qH$ in tt events

FCNC $t \rightarrow H(all)q, t_{SM} \rightarrow bW$ JHEP12(2015)061 ($\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$)

$H \rightarrow WW$, $\tau\tau$, ZZ

- multilepton final states
- reinterpretation of tH search

$H \rightarrow bb$

- dedicated analysis
- split events into several regions (nJets, nBjets)
- sophisticated MVA techniques

$H \rightarrow \gamma \gamma$

- limited by data statistcs

BR t→Hc < 4.6x10⁻³ @95% CL BR t→Hu < 4.5x10⁻³ @95% CL FCNC $t \rightarrow H(\gamma\gamma) q$, $t_{SM} \rightarrow bW$ arXiv:1707.01404

 $(\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1})$

- <u>Two modes</u> for t_{SM} :
 - Hadronic: 2 photons, ≥4 jets, ≥1 *b*-jets
 - Leptonic: 2 photons, 1e or 1μ , \geq 2 jets
- Cuts on $m(t_{FCNC})$ and $m(t_{SM})$
- For each of mode, <u>two categories</u>: passing full selection / failing only t_{SM} mass criterion
- 4-channels combined: BR

- Compatibility of channels: 2.3σ
- Statistics limited. Dominant systematic uncertainties:
- JES, ME generator and radiation modelling

The top quark is the **heaviest fundamental particle**, leading to <u>unique properties from both the</u> <u>theoretical and experimental sides</u> \rightarrow **sensitive to new physics in production and decay**

→ Precise measurements of the top quark mass and couplings may provide insights on the underlying mechanism for EWSB and whether or not the top quark plays a role in it.

All measurements are in good agreement with SM predictions

- * most of the measurements: systematically limited (experimental unc. ~ modelling unc.)
- * largest experimental unc. stem from the calibration of the jet and b-jet energy scales
- * largest modelling unc. are due to hadronisation and ISR/FSR radiation.

SM measurements (rel. precisions achieved in ATLAS)

- Top quark mass: MC mass (0.4%) and pole mass (1%)
- Top quark width (first direct measurement: 50%)
- Spin observables (full spin matrix, 15 observables, 3-30%)
- Most precise W-helicity measurement (2-5%)
- $_{\prime}$ *tt*+ γ cross-section (13%)
- *tt+Z/W* cross-sections (30%, 50%)

FCNC searches

Decay: $t \rightarrow qH, t \rightarrow qZ$ Production: $qg \rightarrow t$

Entering region sensitive to flavour violating Yukawa coupling in 2HDM

BACK-UP

Increase in the cross sections

Increase of expected cross section in Run 2 \rightarrow more tt+X events in Run2 !!!!!

Cross section ratios 13 TeV / 8 TeV

Top mass measurement: template method – single lepton

Single lepton channel, $\sqrt{s} = 7$ TeV, 4.7 fb⁻¹ Selection: one lepton (e/µ), MET, ≥4 jets, ≥1 b-tagged jet (75% eff.) Reconstruction: kinematic likelihood fit (using b-tag info.)

1/9/17

María Moreno Llácer – Top quark mass and properties measurements

Eur. Phys. J. C75 (2015) 330

b-jet

Summary of latest ATLAS top mass measurements

María Moreno Llácer – Top quark mass and properties measurements

1/9/17

m_{top}^{pole} from lepton and dilepton differential cross-sections

ATLAS-CONF-2017-044

	p_{T}^ℓ	$p_{\mathrm{T}}^{e\mu}$	$m^{e\mu}$	$p_{\mathrm{T}}^{e} + p_{\mathrm{T}}^{\mu}$	$E^e + E^\mu$
$\chi^2/N_{ m dof}$	9/8	5/7	11/10	11/6	8/8
m_t^{pole} [GeV]	$169.7 {}^{+2.9}_{-2.7}$	175.1 ± 1.9	$174.5^{+5.1}_{-5.3}$	170.3 ± 2.1	$168.5^{+3.2}_{-3.3}$
Data statistics	± 2.0	±1.4	$+3.8 \\ -4.0$	±1.4	± 2.3
Expt. systematic	+2.5 -2.3	± 0.9	$+2.9 \\ -3.3$	+1.5 -1.6	± 2.0
PDF uncertainty	± 0.5	± 0.1	±1.1	± 0.5	± 1.4
QCD scales	± 1.1	$+0.7 \\ -0.8$	± 2.6	+0.4 -0.5	± 0.7

Table 15: Measurements of the top quark mass from individual fits to the lepton p_T^{ℓ} and dilepton $p_T^{e\mu}$, $m^{e\mu}$, $p_T^e + p_T^{\mu}$ and $E^e + E^{\mu}$ distributions, using fixed-order predictions from MCFM with the CT14 PDF set. The χ^2 value at the best-fit mass for each distribution, the fitted mass with its total uncertainty, and the individual uncertainty contributions from data statistics, experimental systematics, and uncertainties on the predictions from PDF and QCD scale effects are shown.

m_{top}^{pole} from lepton and dilepton differential cross-sections

ATLAS-CONF-2017-044

	CT14	MMHT	NNPDF 3.0	HERAPDF 2.0	ABM 11	NNPDF nojet
$\mu_F = \mu_R = m_t/2$						
$\chi^2/N_{\rm dof}$	71/68	70/68	67/68	67/68	71/68	64/68
m_t^{pole} [GeV]	173.5 ± 1.2	173.4 ± 1.2	173.2 ± 1.2	172.9 ± 1.2	$172.8^{+1.3}_{-1.2}$	173.1 ± 1.2
Data statistics	± 0.9	± 0.9	±0.9	± 0.9	±0.9	± 0.9
Expt. systematic	$+0.7 \\ -0.8$	± 0.8	± 0.8	± 0.9	$+0.9 \\ -0.8$	± 0.8
PDF uncertainty	± 0.1	± 0.1	+0.1 -0.2	± 0.1	± 0.1	± 0.4
QCD scales	± 0.1	±0.1	+0.1 -0.0	± 0.1	± 0.1	± 0.0
$\mu_F = \mu_R = H_T/4$						
$\chi^2/N_{ m dof}$	69/68	67/68	64/68	61/68	66/68	60/68
m_t^{pole} [GeV]	173.6 ± 1.3	173.4 ± 1.3	173.2 ± 1.3	173.6 ± 1.3	$173.7 {}^{+1.3}_{-1.2}$	$173.2^{+1.3}_{-1.4}$
$\mu_F = \mu_R = E_T/2$						
$\chi^2/N_{ m dof}$	71/68	70/68	66/68	64/68	68/68	64/68
m_t^{pole} [GeV]	174.7 ± 1.4	$174.5^{+1.5}_{-1.4}$	$174.3^{+1.5}_{-1.4}$	$173.6^{+1.3}_{-1.2}$	$173.4^{+1.2}_{-1.1}$	$174.0^{+1.5}_{-1.4}$

Table 16: Measurements of the top quark mass from combined fits to all eight lepton and dilepton distributions, using fixed-order predictions from MCFM with the CT14, MMHT, NNPDF 3.0, HERAPDF 2.0, ABM 11 and NNPDF 3.0_nojet PDF sets, and various choices for the central QCD factorisation and renormalisation scales μ_F and μ_R . The upper section of the table gives the results for $\mu_F = \mu_R = m_t/2$, showing the χ^2 values at the best-fit mass for each PDF set, the fitted mass with its total uncertainty, and the breakdown of individual uncertainty contributions from data statistics, experimental systematics, and uncertainties on the predictions from PDF and QCD scale effects. Uncertainties given as '0.0' are smaller than 0.05 GeV. The lower parts of the table give the χ^2 values, fitted mass and total uncertainty for alternative scale choices of $\mu_F = \mu_R = H_T/4$ and $E_T/2$.

1/9/17 María Moreno Llácer – Top quark mass and properties measurements

Top coupling to W boson: W helicity fractions in tt events

Test V-A structure via angular observables \rightarrow W helicity fractions

 $W \text{ bosons from top quark decays } \rightarrow 3 \text{ possible polarizations (helicity fractions): longitudinal } F_0$ $\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^*\right) F_0 + \frac{3}{8} \left(1 - \cos\theta^*\right)^2 F_L + \frac{3}{8} \left(1 + \cos\theta^*\right)^2 F_R \quad \begin{array}{c} \text{left-handed } \mathsf{F}_{\mathsf{L}} \\ \text{right-handed } \mathsf{F}_{\mathsf{R}} \end{array}$

 θ_{l}^{*} angle between down-type fermion (charged lepton or down-type quark) from W and reversed direction of top quark, both in the W boson rest frame.

Top coupling to W boson: W helicity fractions in tt events

1/9/17 María Moreno Llácer – Top quark mass and properties measurements

35

Spin correlations

Doubly differential cross section:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_1 d \cos \theta_2} = \frac{1}{4} (1 \pm (\alpha P)_1 \cos \theta_1 \pm (\alpha P)_2 \cos \theta_2 - C \cos \theta_1 \cos \theta_2)$$

- α_i: spin analyzing power of decay product i; θ_i: direction of daughter wrt. chosen axis
- P: polarization
- C spin correlation; C = $A\alpha_1 \alpha_2$

	b	lepton	d	u	$\Delta T(\Delta A) + \Delta T(++) = \Delta T(A+) = \Delta T(+A)$
α _{i/j} (LO)	-0.41	1.00	1.00	-0.31	$A = \frac{N(\uparrow\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\uparrow) + N(\uparrow\downarrow)}$
α _{i/j} (NLO)	-0.39	0.998	0.93	-0.31	$I\mathbf{v}(1+1) + I\mathbf{v}(1+1) + I\mathbf{v}(1+1) + I\mathbf{v}(1+1)$

1/9/17 María Moreno Llácer – Top quark mass and properties measurements

Flavour changing neutral currents

BR(t→bW,sW,dW) ~100%, ~0.2% 0.01%

→ Charged current decays:

→ Latest ATLAS searches in decay (t→Xq) and production (pp→tX)

FCNC top decay: $t \rightarrow Hq$ $t \rightarrow H(\gamma\gamma)q$ arXiv:1707.01404 ($\sqrt{s} = 13$ TeV, 36.1 fb⁻¹) $t \rightarrow H(all)q$ JHEP12(2015)061 ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹)

Flavour changing neutral currents (FCNC)

Top quark decays

FCNC top decay: $t \rightarrow Zq$ Eur. Phys. J. C76 (2016) 55 ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹) FCNC single top production: $qg \rightarrow t$ Eur. Phys. J. C76 (2016) 55 ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹)

s, d, b

 $\bar{q}', \bar{\nu}$

New FCNC t \rightarrow qH($\gamma\gamma$) results

t_{FCNC} → $qH(\gamma\gamma)$ with $q = c, u, t_{SM}$ → bW with $W=jj, I_V, \sqrt{s} = 13$ TeV, 36.1 fb⁻¹

arXiv:1707.01404

- <u>Two modes</u> for t_{SM} :

1/9/17

- Hadronic: 2 photons, ≥4 jets, ≥1 b-tagged.
- Leptonic: 2 photons, 1e or 1μ , ≥ 2 jets.
- Invariant mass combinations with kinematic compatibility with two top quark decays.
- For each of the modes, two categories: events passing full selection

events failing only $t_{\mbox{\scriptsize SM}}$ mass criterion

- <u>Main backgrounds</u>: $\gamma\gamma j$, $X\gamma$ and $X\gamma\gamma$ (X: W,Z,ttbar) and ttH($\rightarrow\gamma\gamma$).
- Fit S and B to data: m_{yy} distributions [yyj bkg. shape from SHERPA, signal from MG5_aMC@NLO]
- Dominant systematic uncertainties: JES, ME generator and radiation modelling

María Moreno Llácer – Top quark mass and properties measurements

Top quark couplings: towards a global fit (EFT)

The effects of new physics at a scale Λ can be described by an effective Lagrangian

* These operators can induce corrections to SM couplings (e.g. may originate anomalous couplings of the top quark to the gauge bosons).

 \rightarrow need to identify which operators contribute to each process

EFT operators

Standard model deviations are described by higher dimensional operators:

$$\mathcal{L}_{SM}^{(6)} = \mathcal{L}_{SM}^{(4)} + \sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i} + \cdots$$
 Interference SM-BSM Pure BSM term

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_{i}}{(\Lambda/1 \text{TeV})^{2}} \sigma_{i}^{(1)} + \sum_{i \leq j} \frac{C_{i}C_{j}}{(\Lambda/1 \text{TeV})^{4}} \sigma_{ij}^{(2)}$$
Dimension 6 operators relevant
for top quark physics.
modify vector and axial
coupling of top to EW
gauge bosons
O_{tB}, O_{tW}: EW dipole operator
O_{tC}: chromomagnetic
dipole operator

$$\frac{O_{iB}}{(2)}, O_{tW}: EW dipole operator
O_{tC}: chromomagnetic
dipole operator$$

$$\frac{O_{iB}}{(2)}, O_{tW}: EW dipole operator
O_{iC}: chromomagnetic
dipole operator$$

$$\frac{O_{iB}}{(2)}, O_{tW}: EW dipole operator
O_{iC}: chromomagnetic
dipole operator$$

$$\frac{O_{iB}}{(2)}, O_{tW}: EW dipole operator
O_{iC}: chromomagnetic
dipole operator$$

$$\frac{O_{iB}}{(2)}, O_{iW}: EW dipole operator
O_{iC}: chromomagnetic
dipole operator$$

$$\frac{O_{iB}}{(2)}, O_{iC}: e^{i}(p^{2}), O_{iA}, O_{iA},$$

1/9/17

Searching for the tiniest signals: very challenging

Virtues:

1/9/17

Many possible final states to consider!

Challenges:

- low production cross section
- a priori many handles against backgrounds with large theoretical uncertainties!

- → Most of these analyses entering regime of results being systematically limited !!
- \rightarrow Recent developments in theory community:
 - NLO QCD+EW corrections to *tt+H/Z/W*
 - · NLO QCD corrections to t+H
 - · off-shell effects in *tt+H* production
 - beyond NLO QCD: soft resummation
- → Implementation of latest theoretical

developments is crucial to reduce uncertainties.

María Moreno Llácer – Top quark mass and properties measurements

Top coupling to Higgs bosons: tt+H

ε[>]|>

 $\frac{m_F}{V}$ or $\sqrt{\kappa_V}$

Ϋ́

• **Indirect constraints** on the top-Higgs Yukawa coupling can be extracted from channels involving the ggH and $H_{\gamma\gamma}$ vertices (assumes no new particles in loops).

• tt+H process allows for direct measurement of top Yukawa coupling

 \rightarrow allows probing for New Physics contributions in the ggH and Hyy vertices.

Many possible final states to consider! Need to find the best combinations of top and Higgs decay modes to isolate the signal.

Several channels depending on the final signature → distinctive final states with high jet/b-tag multiplicity → different analysis regions with very different strategy

H→bb (BR=58%)	dominant mode but large background
H→WW, ZZ, ττ (BR=30%)	multilepton final state
H → γγ (BR<0.23%)	tiny but clean signature

1/9/17 María Moreno Llácer – Top quark mass and properties measurements

Top coupling to Higgs boson: tt+H

- Run 1 ATLAS+CMS Higgs combination: ttH significance of 4.4 σ (2.0 σ expected)
- Excess in both ATLAS and CMS μ_{ttH} = σ/σ_{SM}
 - coming from ttH multilepton analyses

One of the highlights of Run 2 physics program

JHEP08(2016)045

Search for tt+H (H \rightarrow bb)

ttH (H→bb) signal produces 1 or 2 leptons and 6 or 4 jets, 4 of them b-jets

- Very challenging final state affected by large systematics: tt+jets, tt+heavy flavour modelling, *b*-tagging, JES
- Categorize events according to the # jets and b-jets -> control and signal regions
- Build multivariate discriminant in signal-enriched regions
- Signal-depleted channels play a key role constraining systematic uncertainties
- Analysis relies on a profiled likelihood fit, in order to constrain in-situ the leading systematics

Search for *tt*+*H* (H→multilepton)

Prefit predictions and observed data events

Best fit values of the tt+H signal strength

 Most analyses are still statistically limited, main syst. from non-prompt and charge misID

- Run1: μ =2.1^{+1.4} _{-1.2} (excess in $\mu\mu$ and 3 ℓ)
- Reinterpretation of results as a BSM signal? multilepton+bjets+MET final states

María Moreno Llácer – Top quark mass and properties measurements

Sample statistics, S/B ratio and dominant backgrounds vary across different channels for each of them, several SRs (lepton flavour/charge, nJets, nBjets) and CRs (Z+jets, WZ, ZZ)

Channel	Sub-channels	Characteristics	Main cuts	Main background
SS dilepton	μμ	targets ttW	≥2 b-tags	fake leptons derived from matrix method (DD) in control sample with 2I OS+SS and looser lepton requirements
Trilepton	ttZ (ttW) enriched	small sample size, good S/B	≥1 b-tag	leptonic decay WZ, (fake leptons) One WZ CR is included in the fit; another is defined for validation
Tetralepton	tt→ same (diff.) flavour	very small sample size, excellent S/B	1-2 OSSF pairs	leptonic decay ZZ (rare SM) One ZZ CR is included in the fit:

Sample statistics, S/B ratio and dominant backgrounds vary across different channels for each of them, several SRs (lepton flavour/charge, nJets, nBjets) and CRs (Z+jets, WZ, ZZ)

Sample statistics, S/B ratio and dominant backgrounds vary across different channels for each of them, several SRs (lepton flavour/charge, nJets, nBjets) and CRs (Z+jets, WZ, ZZ)

Run I LHC top FCNC searches

1/9/17 María Moreno Llácer – Top quark mass and properties measurements

49

FCNC QCD Lagrangian: anom.

coupl.

Run I LHC FCNC results are expressed in the framework of anomalous couplings:

$+ \frac{\sqrt{2}}{2}e\frac{\kappa_{\gamma qt}}{\Lambda} \cdot \bar{t}\sigma^{\mu\nu} \left(f_{\gamma q}^{L}P_{L} + f_{\gamma q}^{R}P_{R}\right)qA_{\mu\nu} + \frac{1}{\sqrt{2}}\eta_{hqt} \cdot \bar{t}\left(f_{hq}^{L}P_{L} + f_{hq}^{R}P_{R}\right)qH$	tensor scalar
$+ \frac{1}{\sqrt{2}}\eta_{hqt} \cdot \overline{t} \left(f_{hq}^L P_L + f_{hq}^R P_R \right) qH$	scalar
Top decay κ_{aut}/Λ κ_{uut}/Λ κ_{uut}/Λ ζ_{aut} η_{but} $\sqrt{2}$ g κ_{zqt} $\overline{t}_{\sigma}\mu\nu$ $(fL D + fR D)$ qZ	tensor
$\frac{1}{1} \frac{1}{1} \frac{1}$	
$t \rightarrow \gamma q$ X $1 g = \tau \mu (\tilde{c} L D + \tilde{c} B D) / \tau$	vector
$t \rightarrow Z q$ X X NLO + $\frac{1}{4} \frac{1}{\cos \theta_W} \zeta_{zqt} \cdot t \gamma^{\mu} \left(f_{zq}^{\mu} P_L + f_{zq}^{\mu} P_R \right) q Z_{\mu}$	+h.c
t→h q X	1
Single top $\kappa_{gqt}/\Lambda = \kappa_{\gamma qt}/\Lambda = \kappa_{zqt}/\Lambda = \zeta_{zqt} = \eta_{hqt}$ Assumptions	
$p p \rightarrow t (g)$ X $\sqrt{\left f_{xq}^L\right ^2 + \left f_{xq}^R\right ^2} = 1 \qquad \frac{\kappa_{xqt}}{\lambda}, \zeta_{xat}, all$	nd $\eta_{xat} > 0$
$p p \rightarrow t \gamma$ X X Example of Λ Λ	-1-
$p p \rightarrow t Z$ X X X $(\sqrt{ \tilde{f}_{xq} ^2 + \tilde{f}_{xq} ^2} = 1)$	
pp→th X X Qincerlifications	
Simplifications $f_{xq}^R = 0 \& f_{xq}^L = 1$ X: usually neglected $f_{xq}^R = 1 \& f_{xq}^L = 0$	

1/9/17 María Moreno Llácer – Top quark mass and properties measurements