PRECISION MEASUREMENTS

WITH AN ELECTROWEAK BOSON IN THE FINAL STATE WITH THE ATLAS DETECTOR

Valerie Lang On behalf of the ATLAS Collaboration

PANIC 2017, Bejing, 1 Sep 2017

COLLISIONS AT THE LHC

- Our understanding as mapped into simulation
 - We need to know
 - Electroweak sector: m_W, lepton universality
 - Proton content: Valence quarks, gluons, strange sea quarks
 - Hard interaction: Higher order QCD & EW, hard parton emissions
 - Radiation:
 Parton showers & matching,
 EW boson radiation
 - *Non-perturbative regime:* Matching to perturbative

W+jets

production

COLLISIONS AT THE LHC

- Our understanding as mapped into simulation
 - We need to know
 - Electroweak sector: m_w, lepton universality
 - *...action:* ugher order QCD & Fstudy all of this in Wor Z production hard parton emission *Radiation:* Parton fi

 - Parton showers & matching, EW boson radiation
 - Non-perturbative regime: Matching to perturbative

Credit: Frank Krauss,

Sherpa, Durham University Modifications: Own liability

W+jets

production

W AND Z MEASUREMENTS

- A SELECTION -

NEW

- Recent ATLAS results → split into categories
 - Precision
 - W mass @ 7TeV (<u>arXiv:1701.07240</u>)
 - W, Z cross sections @ 7TeV (*Eur. Phys. J. C 77 (2017) 367*)
 - Jets
 - Z+jets @ 13TeV (*Eur. Phys. J. C77 (2017) 361*)
 - W+jets @ 8TeV preliminary results for the first time
 - Specials
 - Collinear W @ 8TeV (<u>Phys. Lett. B 765 (2017) 132</u>)
 - k_t-splitting scales in Z production @ 8TeV (<u>JHEP08 (2017) 026</u>)
 - Comprehensive
 - Z 3D @ 8TeV (*Eur. Phys. J. C 76(5), 1-61 (2016)*)
 → skip in the interest of time

 \rightarrow For full details, visit <u>ATLAS public results page</u>, W & Z

4

- <u>ARXIV:1701.07240</u> -
- W production in ATLAS

W mass

- → Need observables sensitive to m_W : p_T^{lep} , m_T
- \rightarrow Challenge: High precision!
 - \rightarrow World average:
 - $m_W = 80385 \pm 15 MeV$
 - \rightarrow 0.02% uncertainty
 - → Electroweak fit:
 - $m_W = 80356 \pm 8 MeV$
 - \rightarrow 0.01% uncertainty!

Typical selection in the presented analyses

- Exactly 1 isolated electron or muon with:
 - $p_T > 20-30 \text{GeV}, |\eta| < 2.4-2.47$
- Missing transverse momentum $E_T^{miss} > 25-30 GeV$
- Transverse mass $m_T > 40-60 GeV$

- <u>ARXIV:1701.07240</u> -
- Precision of m_w measurement
 - Extremely good understanding of lepton calibrations and hadronic recoil
 - Very detailed understanding of theoretical modelling
 - Default NLO Powheg+Pythia8 MC simulation → reweighted to:
 - NNLO QCD as function of rapidity
 - At each rapidity: Vector boson p_T shape
 - At each rapidity & p_T: Angular coefficients describing decay in rest frame
- χ²-Compatibility test for p_T^{lep} and m_T for different m_W
 - Minimum of interpolated $\chi^2\text{-}$ function \rightarrow measured m_W

- <u>ARXIV:1701.07240</u> -

- Precision of m_w measurement
 - Separate results for W⁺, W⁻, electron, muon, p_T^{lep} , m_T, 3-4 $|\eta^{lep}|$ bins

→ Taking into account statistical and systematic uncertainties and their correlations

 $m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$

 \rightarrow Similar precision as currently leading measurements by CDF and D0

 \rightarrow Dominating uncertainties: PDF (mod.), lepton-calibration (exp.)

W, Z CROSS SECTIONS - EUR. PHYS. J. C 77 (2017) 367 -

Precision total, fiducial and rapidity-related cross sections

- Differential cross sections
 - For example for Z

 → Dominating uncertainties: Multijet bkg (W), lepton reconstruction & identification efficiencies (Z), signal modelling (both)

→ Determine proton content
→ New PDF set ATLAS-epWZ16

 $\rightarrow r_s = \frac{s+\bar{s}}{2\bar{d}} \rightarrow \text{Supports}$ unsurpressed strange sea

Z+JETS - EUR. PHYS. J. C77 (2017) 361 -

Production of jets in association with a Z boson

р

→ Count jets: Anti-k_t R=0.4 $p_T > 30 \text{GeV}, |y| < 2.5$ → Measure jet (-related) properties like leading jet p_T , |y|, H_T (= Σp_T^{jet} + p_T^{lep1} + p_T^{lep2}), etc.

e+, μ+

р

e⁻, μ⁻

 $Z/\gamma^* (\rightarrow I^{+}) + jets$

W+JETS - FIRST PRELIMINARY RESULTS -

- $W(\rightarrow ev)$ production in association with jets
 - Include forward jets: |y| < 4.4</p>

Challenge – Backgrounds

- → Multijet: Dominant at low N_{jets} → Suppress by electron isolation & low momentum contributions to E_T^{miss} from tracks, not calorimeter deposits
- → $t\bar{t}$: Dominant at high N_{jets} → Suppress by veto on events w/ b-tagged jets (MV1, 60% eff., p_T>20GeV, |η|<2.5)
- → Measure fiducial and differential cross sections for W, W⁺, W⁻ and W⁺/W⁻

0.8

0.6 1.4 1.2 0.8

0.6

500

1000

1500

2000

Differential cross section and cross section ratio da/dH_τ [fb/GeV] ATLAS Preliminary NEW 10 / do^{w-}/dH ATLAS Preliminary s = 8 TeV. 20.2 fb W(→ ev) + ≥ 1 jets Z 🕶 Z 🛛 Data 10 s = 8 TeV, 20.2 fb⁻¹ anti-k, jets, R = 0.4 N_{ietti} NNLO (W⁺ + ≥ 1 jets)/(W⁻ + ≥ 1 jets) p_^{iat} > 30 GeV, |y^{iat} | < 4.4 anti-k, jets, R = 0.4 BH+S Excl. Sum 10° N_{iotti} NNLO Z Data > 30 GeV, |y|" | < 4.4 dσ^{W⁺}/dH_⊤ IERPA 2.2.1 NLO BH+S BH+S Excl. Sum SHERPA 2.2.1 LO SHERPA 2.2.1 NLO SHERPA 2.2.1 LO 10 SHERPA 1.4 LO SHERPA 1.4 LO ALPGEN+PY6 ALPGEN+PY6 ALPGEN+HERWIG 10² ALPGEN+HERWIG 10 NEW 10 10* Pred./Data Pred./Data Pred./Data 1.4 Pred/Data Pred/Data Pred/Data 1.2 0.8 0.9 0.6 1.4 1.1 1.2

8TeV, 20.2fb

H_T [GeV] H_T [GeV] \rightarrow Similar to Z+jets, NNLO improves on NLO, though not as perfect w/ forward jets than with central jets only

2500

0.9

0.9

0

500

1000

1500

2000

2500

 \rightarrow W⁺/W⁻ exposes different features in predictions \rightarrow complementary Valerie Lang - PANIC 2017 01.09.2017

 \rightarrow Information on proton content \rightarrow Complementary to W asymmetry in ATLAS – probes similar *x* as W asymmetry @ Tevatron

COLLINEAR W EMISSION

- <u>PHYS. LETT. B 765 (2017) 132</u> -
- Radiation of W bosons from light partons at high p_T

Events / 0.2

Data/MC

400

350

300E

250

200F

150E

100 50

ō

- Measurement of angle of decay muon (W→µv) to closest jet
- Boosted topology, central (|η^{jet}|<2.1)
 - Leading jet p_T > 500GeV
 - Other jet p_T > 100GeV
 - Again no b-tagged jets (MV1, 70% eff., p_T>25GeV, |η|<2.1)

Composition

Process	$0.2 < \Delta R < 2.4$	$\Delta R > 2.4$
Dijets	5%	2%
tī	7%	2%
Z + jets	6%	4%
Dibosons	2%	4%
W + jets	80%	88%
Data	1907	833

Valerie Lang - PANIC 2017

COLLINEAR W EMISSION - PHYS. LETT. B 765 (2017) 132 -

Differential cross section as function of angular separation

SUMMARY

- Many interesting measurements with W and Z bosons possible
 - Probing different aspects of our understanding of the Standard model
 - Proton structure functions, electroweak parameters, perturbative QCD, QCD radiation, electroweak radiation, etc.
 - Experimental challenges
 - Precision of calibrations, background suppression & estimation, large data and simulation samples required
 - Theoretical challenges
 - Meet experimental precision → higher order calculations in QCD and EW, higher number of hard parton emissions, radiations

→ Very interesting physics results obtained with W and Z bosons already

 \rightarrow More data still to come

THANK YOU FOR YOUR ATTENTION

Valerie Lang - PANIC 2017

01.09.2017

01.09.2017

- <u>ARXIV:1701.07240</u> -
- Multijet estimate
 - Template fits to p_T^{miss} , m_T and p_T^{I}/m_T in two jet-enriched regions
 - FR1: Remove SR-requirements on p_T^{miss} and m_T
 - FR2: In addition, remove SR-requirement on hadronic recoil u_T
 - Multijet template: From data w/ inverted lepton isolation requirement
 - Electron channel

Muon channel

Extrapolation to SR-isolation requirement

W BOSON MASS - ARXIV:1701.07240 -

Systematic uncertainties

Combined categories	Value [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.	χ^2/dof of Comb.
$m_{\rm T}, W^+, e^{-\mu}$	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
$m_{\rm T}, W^-, e^{-\mu}$	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
$m_{\rm T}, W^{\pm}, e^{-\mu}$	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
$p_{\mathrm{T}}^{\ell}, W^+, e^{-\mu}$	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
$p_{\rm T}^{\tilde{\ell}}, W^-, e^-\mu$	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
$p_{\mathrm{T}}^{\hat{\ell}}, W^{\pm}, e^{-\mu}$	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$p_{\mathbf{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W ⁺ , e	80345.4	11.7	0.0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
$m_{\rm T}$ - $p_{\rm T}^{\hat{\ell}}, W^-, e$	80359.4	12.9	0.0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
m_{T} - $p_{\mathrm{T}}^{\hat{\ell}}, W^{\pm}, e$	80349.8	9.0	0.0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{\rm T}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^+, \mu$	80364.1	11.4	12.4	0.0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^{-}, \mu$	80398.6	12.0	13.0	0.0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
m_{T} - $p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.0	8.6	10.7	0.0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^+, e$ - μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
$m_{\rm T}$ - $p_{\rm T}^{\hat{\ell}}, W^-, e$ - μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
m_{T} - p_{T}^{ℓ} , W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

Table 11: Results of the m_W measurements for various combinations of categories. The table shows the statistical uncertainties, together with all experimental uncertainties, divided into muon-, electron-, recoil- and background-related uncertainties, and all modelling uncertainties, separately for QCD modelling including scale variations, parton shower and angular coefficients, electroweak corrections, and PDFs. All uncertainties are given in MeV.

W, Z CROSS SECTIONS - EUR. PHYS. J. C 77 (2017) 367 -

- Multijet estimate
 - Electron channel

W: Fit E_{T}^{miss} \rightarrow relaxing m_T and E_{τ}^{miss} \rightarrow Multijet tempalte from data w/ inverted (ID and) iso

Z: Fit isolation \rightarrow Again MJ template from data

E_T^{cone30}/p

100

120

4.5

p_cone40/p_

4

W, Z CROSS SECTIONS - EUR. PHYS. J. C 77 (2017) 367 -

Systematic uncertainties

Electron channel

	$\delta\sigma_{W+}$ (%)	$\delta\sigma_{W-}$ (%)	$\delta\sigma_Z$ (%)	$\delta\sigma_{\text{forward }Z}$ (%)
Trigger efficiency	0.03	0.03	0.05	0.05
Reconstruction efficiency	0.12	0.12	0.20	0.13
Identification efficiency	0.09	0.09	0.16	0.12
Forward identification efficiency	-	-	_	1.51
Isolation efficiency	0.03	0.03	_	0.04
Charge misidentification	0.04	0.06	_	_
Electron p_T resolution	0.02	0.03	0.01	0.01
Electron $p_{\rm T}$ scale	0.22	0.18	0.08	0.12
Forward electron p_T scale + resolution	_	-	-	0.18
$E_{\rm T}^{\rm miss}$ soft term scale	0.14	0.13	_	_
$E_{\rm T}^{\rm miss}$ soft term resolution	0.06	0.04	_	_
Jet energy scale	0.04	0.02	_	_
Jet energy resolution	0.11	0.15	_	_
Signal modelling (matrix-element generator)	0.57	0.64	0.03	1.12
Signal modelling (parton shower and hadronization)	0.24	0.25	0.18	1.25
PDF	0.10	0.12	0.09	0.06
Boson pT	0.22	0.19	0.01	0.04
Multijet background	0.55	0.72	0.03	0.05
Electroweak+top background	0.17	0.19	0.02	0.14
Background statistical uncertainty	0.02	0.03	< 0.01	0.04
Unfolding statistical uncertainty	0.03	0.04	0.04	0.13
Data statistical uncertainty	0.04	0.05	0.10	0.18
Total experimental uncertainty	0.94	1.08	0.35	2.29
Luminosity	1.8	1.8	1.8	1.8

Muon channel

	$\delta\sigma_{W+}(\%)$	$\delta\sigma_{W-}$ (%)	$\delta\sigma_Z(\%)$
Trigger efficiency	0.08	0.07	0.05
Reconstruction efficiency	0.19	0.17	0.30
Isolation efficiency	0.10	0.09	0.15
Muon $p_{\rm T}$ resolution	0.01	0.01	< 0.01
Muon p _T scale	0.18	0.17	0.03
$E_{\rm T}^{\rm miss}$ soft term scale	0.19	0.19	_
$E_{\rm T}^{\rm miss}$ soft term resolution	0.10	0.09	_
Jet energy scale	0.09	0.12	_
Jet energy resolution	0.11	0.16	_
Signal modelling (matrix-element generator)	0.12	0.06	0.04
Signal modelling (parton shower and hadronization)	0.14	0.17	0.22
PDF	0.09	0.12	0.07
Boson $p_{\rm T}$	0.18	0.14	0.04
Multijet background	0.33	0.27	0.07
Electroweak+top background	0.19	0.24	0.02
Background statistical uncertainty	0.03	0.04	0.01
Unfolding statistical uncertainty	0.03	0.03	0.02
Data statistical uncertainty	0.04	0.04	0.08
Total experimental uncertainty	0.61	0.59	0.43
Luminosity	1.8	1.8	1.8

Z+JETS - <u>EUR. PHYS. J. C77 (2017) 361</u> -

- Multijet background \rightarrow fit separately for each N_{iets}
 - Template fit of m_{II} in range: 52-148GeV for electron, 40-80GeV for muon channel

Multjet templates from data with looser lepton ID and no/inverted isolation

Z+JETS - <u>EUR. PHYS. J. C77 (2017) 361</u> -

Systematic uncertainties

Table 4 Relative statistical and systematic uncertainties (in %) in the measured cross sections of Z + jets production for successive inclusive jet multiplicities in the electron (top) and muon (bottom) channels

Systematic source	Relative unc	ertainty in $\sigma(Z$	$\ell(\to \ell^+ \ell^-) + \geq$	Njets) (%)				
	$+ \ge 0$ jets	$+ \ge 1$ jets	$+ \ge 2$ jets	$+ \ge 3$ jets	$+ \ge 4$ jets	$+ \ge 5$ jets	$+ \ge 6$ jets	$+ \ge 7$ jets
$Z \rightarrow e^+ e^-$								
Electron trigger	0.1	0.1	0.1	0.2	0.2	0.2	0.3	0.3
Electron selection	1.2	1.6	1.8	1.9	2.3	2.7	2.9	3.8
Jet energy scale	< 0.1	6.6	9.2	11.5	13.8	17.3	20.6	23.7
Jet energy resolution	< 0.1	3.7	3.7	4.4	5.3	5.2	6.2	7.3
Jet vertex tagger	< 0.1	1.3	2.1	2.8	3.6	4.5	5.5	6.3
Pile-up	0.4	0.2	0.1	0.2	0.2	0.1	0.4	0.8
Luminosity	2.1	2.1	2.2	2.3	2.4	2.5	2.6	2.8
Unfolding	3.0	3.0	3.0	3.0	3.0	3.1	3.1	3.2
Background	0.1	0.3	0.6	1.0	1.6	3.3	6.0	11.6
Total syst. Uncertainty	3.9	8.7	11.0	13.4	15.9	19.5	23.6	28.7
Stat. uncertainty	0.1	0.2	0.5	0.9	1.9	3.7	7.7	15.9
$Z ightarrow \mu^+ \mu^-$								
Muon trigger	0.4	0.5	0.4	0.5	0.4	0.5	0.9	0.6
Muon selection	0.8	0.9	1.0	1.0	1.0	1.5	4.2	16.6
Jet energy scale	< 0.1	6.8	9.1	11.9	14.0	17.0	20.9	23.7
Jet energy resolution	< 0.1	3.6	3.6	4.1	5.0	5.9	6.2	9.3
Jet vertex tagger	< 0.1	1.3	2.1	3.1	3.6	4.4	5.6	6.6
Pile-up	0.4	0.1	< 0.1	0.3	0.5	0.1	0.4	0.9
Luminosity	2.1	2.1	2.2	2.3	2.4	2.5	2.6	2.7
Unfolding	3.0	3.0	3.0	3.0	3.0	3.1	3.1	3.2
Background	0.2	0.4	0.6	0.9	1.7	4.0	7.4	12.9
Total syst. Uncertainty	3.8	8.7	10.8	13.6	16.0	19.4	24.6	36.3
Stat. uncertainty	0.1	0.2	0.4	0.8	1.7	3.4	7.2	16.3

W+JETS - FIRST PRELIMINARY RESULTS -

- Multijet estimate
 - Fit of E_T^{miss} distribution in range 15-75GeV for each $N_{jets} \rightarrow$ removed E_T^{miss} requirement for the fit
 - Multijet template from data with inverted electron ID and isolation

W+JETS - FIRST PRELIMINARY RESULTS -

Systematic uncertainties

26

COLLINEAR W EMISSION

- <u>PHYS. LETT. B 765 (2017) 132</u> -
 - Multijet estimate

• Pythia 8 MC simulation \rightarrow normalized to data in control region

Control region:

 93% purity of multijet events

8TeV, 20.3fb-1

- Inverted SR isolation of the muon
- Normalization factor: 1.134 ± 0.054

COLLINEAR W EMISSION

- PHYS. LETT. B 765 (2017) 132 -

Systematic uncertainties

Table 1

The systematic uncertainties in the cross-section measurement. Multiple independent components have been combined into groups of systematic uncertainties.

Systematic Source	$0.2 < \Delta R < 2.4$	$\Delta R > 2.4$	Inclusive
Scaling of dijets to data	0.4%	0.1%	0.3%
Scaling of <i>tt</i> to data	0.6%	0.2%	0.5%
Scaling of $Z + jets$ to data	0.6%	0.3%	0.5%
Jet energy scale	4.6%	5.8%	5.0%
b-tagging efficiency	3.7%	1.2%	2.9%
Data/MC disagreement for dijets	0.9%	0.6%	0.8%
Data/MC disagreement for $t\bar{t}$	1.2%	0.4%	1.0%
Data/MC disagreement for $Z + jets$	0.6%	1.5%	0.9%
Diboson background estimate	2.2%	0.1%	1.5%
Unfolding dependence on prior	1.1%	1.8%	1.3%
Muon momentum scale and resolution	0.0%	0.1%	0.1%
Muon reconstruction efficiency	0.4%	0.4%	0.4%
Muon trigger efficiency	2.0%	1.9%	1.9%
Jet energy resolution	0.6%	0.8%	0.6%
MC background statistical	2.4%	1.8%	2.3%
MC response statistical	1.7%	2.2%	1.9%
Total systematic (excluding luminosity)	7.6%	7.4%	7.3%
Luminosity	1.9%	2.0%	2.0%
Data statistical	2.7%	3.6%	2.2%

8TeV, 20.3fb-1

- Investigate transition from perturbative to non-perturbative regime
 - k_t-jets from charged-particle tracks in the ATLAS inner detector
 - Tracks with $p_T > 400 MeV$, $|\eta| < 2.5$
 - Cluster to jets \rightarrow combine track *i* with track *j*, if

$$d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) \times \frac{\Delta R_{ij}^2}{R^2} < p_{T,i}^2$$

• Splitting scale, when going from (k+1) to k objects: $d_k = \min_{i \neq j} (d_{ij}, d_{ib})$

- Investigate transition from perturbative to non-perturbative regime
 - k_t-jets from charged-particle tracks in the ATLAS inner detector
 - Tracks with $p_T > 400 MeV$, $|\eta| < 2.5$
 - Cluster to jets \rightarrow combine track *i* with track *j*, if

$$d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) \times \frac{\Delta R_{ij}^2}{R^2} < p_{T,i}^2$$

• Splitting scale, when going from (k+1) to k objects: $d_k = \min(d_{ij}, d_{ib})$

Track no.	p _⊤ [GeV]	ΔR _{ij}	√d _{ij} [GeV]	
1	4	12: 0.2, 13: 0.5	12: 2 , 13: 5	Smallest
2	5	23: 0.3	23: 3.8	\rightarrow Combine 1
3	7			and 2

 \rightarrow Let's do some numbers (R=0.4)

- Investigate transition from perturbative to non-perturbative regime
 - k_t-jets from charged-particle tracks in the ATLAS inner detector
 - Tracks with $p_T > 400 MeV$, $|\eta| < 2.5$
 - Cluster to jets \rightarrow combine track *i* with track *j*, if

$$d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) \times \frac{\Delta R_{ij}^2}{R^2} < p_{T,i}^2$$

• Splitting scale, when going from (k+1) to k objects: $d_k = \min(d_{ij}, d_{ib})$

 \rightarrow Let's do some numbers (R=0.4)

- Investigate transition from perturbative to non-perturbative regime
 - k_t-jets from charged-particle tracks in the ATLAS inner detector
 - Tracks with $p_T > 400 \text{MeV}$, $|\eta| < 2.5$
 - Cluster to jets \rightarrow combine track *i* with track *j*, if

$$d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) \times \frac{\Delta R_{ij}^2}{R^2} < p_{T,i}^2$$

• Splitting scale, when going from (k+1) to k objects: $d_k = \min(d_{ij}, d_{ib})$

 \rightarrow Let's do some numbers (R=0.4)

 Cross section as function of splitting scale for R=0.4 and R=1.0 jets → w/ and w/o correction for neutral particles in jets

→ New input for tuning of parameters in non-perturbative states of event generators

Z3D - EUR. PHYS. J. C 76(5), 1-61 (2016) -

- Measurement of differential cross sections as function of $p_T{}^{II}$ and $\phi_\eta{}^*$ for bins in m_{II} and $|y_{II}|$

Table 1 Synopsis of the ϕ_{η}^* and $p_{T}^{\ell\ell}$ measurements, and of the fiducial region definitions used. Full details including the definition of the Born, bare and dressed particle levels are provided in the text. Unless otherwise stated criteria apply to both ϕ_{η}^* and $p_{T}^{\ell\ell}$ measurements

Particle-level definitions (treatment of	final-state photon radiation)				
Electron pairs	Dressed; Born				
Muon pairs	Bare; dressed; Born				
Combined	Born				
Fiducial region Leptons Lepton pairs	$p_T > 20 \text{ GeV} \text{ and } \eta < 2.4$ $ y_{\ell\ell} < 2.4$				
Mass and rapidity regions					
$46 \mathrm{GeV} < m_{\ell\ell} < 66 \mathrm{GeV}$	$ y_{\ell\ell} < 0.8; 0.8 < y_{\ell\ell} < 1.6; 1.6 < y_{\ell\ell} < 2.4$ (ϕ_{η}^* measurements only)				
	$ y_{\ell\ell} < 2.4$				
$66 \text{ GeV} < m_{\ell\ell} < 116 \text{ GeV}$	$\begin{aligned} y_{\ell\ell} &< 0.4; 0.4 < y_{\ell\ell} < 0.8; 0.8 < y_{\ell\ell} < 1.2; \\ 1.2 < y_{\ell\ell} < 1.6; 1.6 < y_{\ell\ell} < 2.0; 2.0 < y_{\ell\ell} < 2.4; \\ y_{\ell\ell} < 2.4 \end{aligned}$				
$116 \mathrm{GeV} < m_{\ell\ell} < 150 \mathrm{GeV}$	$ y_{\ell\ell} < 0.8; 0.8 < y_{\ell\ell} < 1.6; 1.6 < y_{\ell\ell} < 2.4$ (ϕ_{η}^* measurements only)				
	$ y_{\ell\ell} < 2.4$				
	$ y_{\ell\ell} < 2.4, p_{\rm T}^{\ell\ell} > 45 \text{ GeV}, p_{\rm T}^{\ell\ell}$ measurements only				

Z3D - <u>EUR. PHYS. J. C 76(5), 1-61 (2016)</u> -

Differential cross sections in mass peak

Z3D - <u>EUR. PHYS. J. C 76(5), 1-61 (2016)</u> -

Comparison to theory

Resummed prediction ResBos describes well low ϕ_{η}^{*} , but not high ϕ_{η}^{*}

Z3D - EUR. PHYS. J. C 76(5), 1-61 (2016) -

Comparison to theory

Generators interfaced to parton showers get the 5-100GeV part for p_T^{\parallel} roughly right, but neither the very low (non-perturbative) nor the high p_T (hard parton emission) part

Z3D - <u>EUR. PHYS. J. C 76(5), 1-61 (2016)</u> -

Comparison to theory

Fixed order NNLO prediction gets shape approximately right above 40GeV (flat ratio), but absolute cross section prediction is off by 15%, not covered by scale & PDF uncertainties

