

Cross section and coupling measurements with the ATLAS detector for the 125 GeV Higgs Boson in the fermion decay channels

Particles and Nuclei International Conference 2017

Beijing, China September 1st–5th 2017

Kristian Gregersen (University College London) on behalf of the ATLAS Collaboration ALL DE LE DE

ATLAS Introduction

Decay modes of the Higgs boson

- Observed in bosonic decay channels
 - $H \rightarrow ZZ^* \rightarrow 4I$
 - $H \rightarrow \gamma \gamma$
 - $H \rightarrow WW \rightarrow I_V I_V$
- Essential to determine fermionic decay modes
 - Do they follow Standard model predictions?
- Searches for fermionic decays are challenging
 - $H \rightarrow bb$: Large backgrounds
 - $H \rightarrow \tau \tau$: Tau ID and trigger
 - $H \rightarrow \mu \mu$: Clean final state, but very small rate
- Combined Run 1 ATLAS+CMS results
 - JHEP08 (2016) 045

Decay channel	Measured signif. (σ)	Expected signif. (σ)
$H\to\tau\tau$	5.5	5.0
$H \rightarrow bb$	2.6	3.7

SM Higgs (125 GeV) branching fractions:

Dominant decay ~58%

ATLAS Introduction

- Gluon fusion (ggH)
 - Largest production cross section
 - · Best suited for leptonic decay modes
 - $\sigma = 48.6 \text{ pb}$
- Vector boson fusion (VBF)
 - 2 forward jets gives unique handle for background reduction
 - Considered in all searches for fermionic decay modes
 - $\sigma = 3.78 \ pb$
- Associated production with W/Z boson (VH)
 - Leptonic decays of W/Z for triggering & background reduction
 - Considered in searches for $\tau\tau$, bb decay modes
 - $\sigma = 1.37 / 0.88 \text{ pb} (W / Z)$
- Associated production with tt (ttH)
 - Leptonic decays of top(s) for triggering & background reduction
 - Considered in searches for $\tau\tau$, bb decay modes
 - $\sigma = 0.59 \ pb$

Results for this talk

- $\mathbf{H} \rightarrow \mu \mu$
 - 13 TeV
 - 36 fb⁻¹
 - Phys. Rev. Lett. 119 (2017) 051802
- $\mathbf{H} \rightarrow \tau \tau$
 - 7,8 TeV
 - 4.5+20.3 fb⁻¹
 - JHEP 04 (2015) 117
- $H \rightarrow bb$
 - VH
 - 13 TeV
 - 36.1 fb⁻¹
 - Submitted to JHEP, arXiv: 1708.03299
 - VBF + γ
 - 13 TeV
 - 12.6 fb⁻¹
 - ATLAS-CONF-2016-063
 - ttH
 - 13 TeV
 - 13.2 fb⁻¹
 - ATLAS-CONF-2016-080

Measurement expressed in terms of signal strength µ:

$$\mu = \frac{\boldsymbol{\sigma} \cdot \mathbf{BR}}{\left(\boldsymbol{\sigma} \cdot \mathbf{BR}\right)_{SM}}$$

for SM Higgs @ 125 GeV

Event selection

- VBF •
 - At least 2 jets •

 $H \rightarrow \mu \mu$

- BDT to select VBF-like events (**New in Run-2**) •
 - "tight" (BDT-score > 0.9)
 - "loose" (0.7 < BDT-score < 0.9)
- ggF •
 - Not selected as VBF •
 - Events categorised according to di-muon p_{T} and eta •

Results

- Binned maximum likelihood *fit to observed m(μμ)*
 - Using the sum of signal and background ("S+B model")
- Signal model
 - Sum of Gaussian and Crystal Ball functions
- Background model

 $H \rightarrow \mu \mu$

- Breit-Wigner convoluted with a Gaussian, added to an exponential divided by a cubic function
- The Breit-Wigner models the tail the $Z \rightarrow \mu\mu$ background
- Simultaneous fit to m(μμ) for all categories
 - µ = -0.1 ± 1.5
 - upper limit : µ < 3.0 (exp. 3.1) @ 95% CL
- Combined with Run 1
 - µ = -0.1 ± 1.4
 - upper limit : µ < 2.8 (exp. 2.9) @ 95% CL
- Results limited by data statistics

Event yields within 90% mass window

			S/\sqrt{B}	FWHM	Data
Central low $p_{\rm T}^{\mu\mu}$	11	8000	0.12	$5.6 \mathrm{GeV}$	7885
Non-central low $p_{\rm T}^{\mu\mu}$	32	38000	0.16	$7.0 \mathrm{GeV}$	38777
Central medium $p_{\rm T}^{\bar{\mu}\mu}$	23	6400	0.29	$5.7 \mathrm{GeV}$	6585
Non-central medium $p_{\rm T}^{\mu\mu}$	66	31000	0.37	$7.1 \mathrm{GeV}$	31291
Central high $p_{\rm T}^{\mu\mu}$	16	3300	0.28	$6.3 \mathrm{GeV}$	3160
Non-central high $p_{\rm T}^{\mu\mu}$	40	13000	0.35	$7.7~{ m GeV}$	12829
VBF loose	3.4	260	0.21	$7.6~{ m GeV}$	274
VBF tight	3.4	78	0.38	$7.5~{ m GeV}$	79

Event selection and Results

 $H \rightarrow \tau \tau$

- · Categories based on Higgs production and tau decay
 - VBF, ggF and VH production
 - All tau decays (lep-lep, lep-had, had-had)
- Missing Mass Calculater (MMC)
 - · Reconstructs invariant mass of di-tau system
 - Gives most probable kinematic configuration of neutrinos
 using matrix element probability
- Separate BDTs used for VBF and ggF
 - BDT outputs used as final discriminating distribution
- Main backgrounds
 - $Z(\tau\tau)$: estimated with embedding technique
 - select Z(μμ) events in data
 - replace muons with simulated taus
 - · everything except tau decays comes from data
 - Other:
 - Z(ee), Z($\mu\mu$), W+jets, tt, diboson, multijet
- **Results** : Combining all categories/decay channels
 - Observed (expected) significance for $H \rightarrow \tau \tau : 4.5\sigma (3.4\sigma)$
 - µ = 1.43 ^{+0.43} _{-0.37}

Kristian Gregersen (UCL) - Cross section and coupling measurements with the ATLAS detector for the 125 GeV Higgs Boson in the fermion decay channels - PANIC2017 in Beijing - Friday 01.09.2017

E^{miss} [GeV]

Event selection

Events / 25 GeV

Data/Pred.

- Lepton channels •
 - 0/1/2 leptons
- Require 2 b-tagged jets •

 $VH, H \rightarrow bb$

- Event categories to maximize sensitivity •
 - 2/3 jets
 - high V p_T regions •

m_T(W) [GeV]

Z+hf, tt

Submitted to JHEP, arXiv: 1708.03299

Analysis strategy

- 3 versions of the analysis
 - Nominal : BDT VH, H(bb)

VH, $H \rightarrow bb$

- BDT VZ, Z(bb)
- Cut-based m(bb) VH, H(bb)
- Simultaneous fit to discriminating variable in all regions
 - Normalisation of tt and Z/W+hf freely floating
 - Uncertainties on overall and relative normalisation between regions
 - Shape uncertainties on all non-negligible backgrounds
- Nominal :
 - 8 signal regions, 6 control regions

			Categories		
Channel	SB/CB	$75 \mathrm{GeV}$	$V < p_{\mathrm{T}}^{V} < 150 \mathrm{GeV}$	$p_{\mathrm{T}}^{V} > 1$	$50 \mathrm{GeV}$
Ullaimei	517/010	2 jets	3 jets	2 jets	3 jets
0-lepton	SR	-	_	BDT	BDT
1-lepton	SR	-	-	BDT	BDT
2-lepton	SR	BDT	BDT	BDT	BDT
1-lepton	W + HF CR	-	-	Yield	Yield
2-lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield	m_{bb}

2 lepton tt CR ($e\mu$ events)

Submitted to JHEP, arXiv: 1708.03299

$\begin{array}{ll} \text{ATLAS} & VH, H \rightarrow bb \end{array}$

VZ, Z(bb) Cross-check

- WZ \rightarrow lvbb, ZZ \rightarrow vvbb, llbb
- Inclusive cross section ~9 times larger than VH
- Exactly the same events in data as for nominal analysis but using different disciminant.

Submitted to JHEP, arXiv: 1708.03299

VH, H(bb) (BDT)

Results

- Evidence for $H \rightarrow bb$
 - Observed : 3.5σ
 - Expected : 3.0σ
 - $\mu = 1.20 + 0.42 0.36$
 - Lepton channel compatibility: 10%
- Dominant uncertainties
 - Signal modelling
 - MC statistics
 - b-tagging

1 lepton event

 $VH, H \rightarrow bb$

Submitted to JHEP, arXiv: 1708.03299

Cross check with cut-based analysis

- *Di-jet m(bb) mass as discriminating variable*
 - m(bb) after background subtraction (except diboson)
 - Weighted by S/B of each m(bb) bin
 - Signal scaled to best fit value of µ
- Results
 - Significance
 - Observed : 3.5σ
 - Expected : 2.8σ
 - μ = 1.30 ^{+0.28}_{-0.27} (stat.) ^{+0.37}_{-0.29} (syst.)

Additional selection in cut based analysis

Channel				
Selection	0-lepton	1-lepton	2-lepton	
m_{T}^W	-	$< 120 { m ~GeV}$	-	
$E_{\rm T}^{\rm miss}/\sqrt{S_{\rm T}}$	-	-	$< 3.5 \sqrt{\mathrm{GeV}}$	

$p_{\rm T}^V$ regions				
p_{T}^{V}	(75, 150] GeV	(150, 200] GeV	$(200, \infty) \text{ GeV}$	
	(2-lepton only)			
$\Delta R(ec{b}_1,ec{b}_2)$	<3.0	<1.8	<1.2	

 $\binom{+1.22}{-1.13}, \frac{+0.87}{-0.92}$

+0.33 +0.28

+0.24 +0.34

-0.23 , -0.28

+0.18 +0.21

8

(-0.18, -0.19)

6

(-0.32, -0.24

Run 1+2 combination

- Combine with 4.7 fb⁻¹ and 20.3 fb⁻¹ Run 1 result •
 - Correlate signal theoretical uncertainty and b-jet energy scale uncertainty
 - Other uncertainties de-correlated •
- Results ٠
 - Significance •
 - Observed : 3.60
 - Expected : 4.0o
 - $\mu = 0.90 + 0.28_{-0.26}$

$VBF + \gamma, H \rightarrow bb$

Search for H(bb) in VBF events with high pT photon

- Theoretical motivations for VBF + photon •
 - While having smaller cross section than incl. VBF there are several advantages :
 - \rightarrow Photon provides clean signature for triggering
 - difficult to trigger on fully hadronic state for low p_T
 - → Gluon induced non-resonant background suppressed
 - gluons don't radiate photons
 - \rightarrow Destructive inference between diagrams in background
 - FSR vs. ISR of photon

Signal process

Non-resonant background reduced by more than O(10) compared to simple scaling with α_{EM} •

Background processes

Search for H(bb) in VBF events with high pT photon

- Event Selection
 - 2 b-tagged jets
 - 2 forward jets (m(jj) > 800 GeV)
 - 1 central photon
 - |eta| < 2.37
 - extra handle to trigger on
 - reduction of backgrounds
- BDT used to separate signal from background
 - Divide BDT output into different sensitivity categories
 - Fit m(bb) in each category to extract signal
- Results (95% CL limit)
 - Observed : $\mu < 4$
 - Expected : $\mu < 6^{+2.3}_{-1.7}$

High sensitivity category

Search for H(bb) in association with tt

- Will provide direct observation of ttH coupling
- Event selection
 - Search for leptonically decaying W's (1 or 2 leptons)
 - Categorise according to
 - jet multiplicity
 - b-tagged jet multiplicity
- BDT used to separate signal from background
 - BDT output used as discriminating variable in fit
- Results
 - µ = 2.10 ^{+1.0}_{-0.9}
 - Only using 13 fb⁻¹ already reached Run 1 sensitivity!

Conclusions

Searches for the 125 GeV Higgs boson decaying to fermions

- ATLAS is actively exploring direct fermionic decays of SM Higgs boson
- New results with Run 2 data
 - Improved sensitivity to $H \rightarrow \mu\mu$
 - Exploration of new production channel VBF H+γ
 - Evidence for $H \rightarrow bb$ in VH production channel !
- More updates are underway
 - E.g. $H \rightarrow \tau \tau$, ttH, VBF, ...

ATLAS-CONF-2017-041, arXiv: 1708.03299

Simulated events

Process	ME generator	ME PDF	PS and	UE model	Cross-section ace2.5cm
			Hadronisation	tune	order
Signal					
$qq \rightarrow WH$	Powheg-Box v2 $[19] +$	NNPDF3.0NLO ^(\star) [20]	Рутніа8.212 [13]	AZNLO [21]	NNLO(QCD)+
$ ightarrow \ell u b \overline{b}$	GoSAM [22] + MINLO [23,24]				NLO(EW) [25,26,27,28,29,30,31]
$qq \rightarrow ZH$	Powheg-Box v2 $+$	NNPDF3.0NLO $(*)$	Pythia8.212	AZNLO	$NNLO(QCD)^{(\dagger)}+$
$ ightarrow u u b ar{b}/\ell \ell b ar{b}$	GoSAM + MINLO				NLO(EW)
$gg \rightarrow ZH$	Powheg-Box v2	$NNPDF3.0NLO^{(\star)}$	Pythia8.212	AZNLO	NLO+
$\rightarrow u u b \overline{b} / \ell \ell b \overline{b}$					NLL [32,33,34,35,36]
Top quark					
$t\overline{t}$	Powheg-Box v2 [37]	NNPDF3.0NLO	Pythia8.212	A14 [38]	NNLO+NNLL [39]
s-channel	Powheg-Box v1 [40]	CT10 [41]	Рутніа6.428 [42]	P2012 [43]	NLO [44]
t-channel	Powheg-Box v1 [40]	CT10f4	Pythia6.428	P2012	NLO [45]
Wt	Powheg-Box v1 [46]	CT10	Рутніа6.428	P2012	NLO [47]
Vector boson $+$ jet	S				
$W \to \ell \nu$	Sherpa 2.2.1 [16,48,49]	NNPDF3.0NNLO	Sherpa 2.2.1 [50,51]	Default	NNLO [52]
$Z/\gamma^* o \ell\ell$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
$Z \rightarrow \nu \nu$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
Diboson					
WW	Sherpa 2.1.1	CT10	Sherpa 2.1.1	Default	NLO
WZ	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO
	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO

ATLAS-CONF-2017-041, arXiv: 1708.03299

Event selection

Selection	0-lepton	1-1	epton	2-lepton
		e sub-channel	μ sub-channel	
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton
Leptons	0 loose leptons	1 tight electron	1 medium muon	2 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$
	with $p_{\rm T} > 7 {\rm ~GeV}$	$p_{\rm T} > 27 { m ~GeV}$	$p_{\rm T} > 25 { m ~GeV}$	≥ 1 lepton with $p_{\rm T} > 27 { m GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 { m ~GeV}$	$> 30 { m GeV}$	—	-
$m_{\ell\ell}$	-		_	$81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$
Jets	Exactly	2 or 3 jets		Exactly 2 or ≥ 3 jets
Jet $p_{\rm T}$		$> 20 { m ~GeV}$		
<i>b</i> -jets	Exactly 2 <i>b</i> -tagged jets			
Leading <i>b</i> -tagged jet $p_{\rm T}$		>	$\sim 45 { m GeV}$	
H_{T}	> 120 (2 jets), >150 GeV (3 jets)		_	-
$\min[\Delta \phi(ec{E}_{ ext{T}}^{ ext{miss}}, ext{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$		_	-
$\Delta \phi (ec{E}_{\mathrm{T}}^{\mathrm{miss}}, ec{bb})$	$> 120^{\circ}$		_	-
$\Delta \phi(ec{b}_1,ec{b}_2)$	< 140°	_		-
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{E}_{\mathrm{T,trk}}^{\mathrm{miss}})$	< 90°		_	-
$p_{\rm T}^V$ regions	> 150 GeV			(75, 150] GeV, > 150 GeV
Signal regions	\checkmark	$m_{bb} \ge 75 \text{ GeV} \text{ c}$	or $m_{\rm top} \le 225 { m ~GeV}$	Same-flavour leptons
			•	Opposite-sign charge ($\mu\mu$ sub-channel)
Control regions	-	$m_{bb} < 75 \text{ GeV}$ as	nd $m_{\rm top} > 225 {\rm ~GeV}$	Different-flavour leptons

Signal acceptance

$m_H = 125 \text{ GeV at } \sqrt{s} = 13 \text{ TeV}$				
Process	Cross section × B [fb]	A	cceptance	%]
1 100055		0-lepton	$1 ext{-lepton}$	$2 ext{-lepton}$
$qq \to ZH \to \ell\ell bb$	29.9	< 0.1	< 0.1	7.0
$gg \to ZH \to \ell\ell b\bar{b}$	4.8	< 0.1	< 0.1	15.7
$qq \to WH \to \ell \nu b \bar{b}$	269.0	0.2	1.0	—
$qq \to ZH \to \nu\nu b\bar{b}$	89.1	1.9	—	_
$gg \to ZH \to \nu\nu b\bar{b}$	14.3	3.5	—	—

BDT variables

Variable	0-lepton	1-lepton	2-lepton
p_{T}^{V}	$\equiv E_{\mathrm{T}}^{\mathrm{miss}}$	×	Х
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×
$p_{\mathrm{T}}^{b_1}$	×	×	×
$p_{\mathrm{T}}^{b_2}$	×	×	×
m_{bb}	×	\times	×
$\Delta R(ec{b}_1,ec{b}_2)$	×	×	×
$ \Delta\eta(ec{b}_1,ec{b}_2) $	×		
$\Delta \phi(ec V, b ec b)$	×	×	×
$ \Delta\eta(ec V, bec b) $			×
$m_{ m eff}$	×		
$\min[\Delta \phi(ec{\ell},ec{b})]$		×	
$m^W_{ m T}$		\times	
$m_{\ell\ell}$			×
$m_{ m top}$		\times	
$ \Delta Y(ec V, bec b) $		×	
	Only	v in 3-jet ev	vents
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×
m_{bbj}	×	×	×

Break-down of uncertainties on signal strength

 $VH, H \rightarrow bb$

4S

Source of uncertainty σ_{μ}			
Total		0.39	
Statistical		0.24	
Systematic		0.31	
Experiment	al uncertainties		
Jets		0.03	
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.03	
Leptons		0.01	
	<i>b</i> -jets	0.09	
b-tagging	c-jets	0.04	
	light jets	0.04	
	extrapolation	0.01	
Dile up		0.01	
I ne-up		0.01	
	ll - 11:	0.04	
<u>1 neoretical</u>	and modelling und	$\frac{certainties}{0.17}$	
Signal		0.17	
Floating nor	rmalisations	0.07	
Z + jets		0.07	
W + jets		0.07	
$t\overline{t}$		0.07	
Single top quark		0.08	
Diboson		0.02	
Multijet		0.02	
J			
MC statistical		0.13	

Results

VH, $H \rightarrow bb$

