Searches for Heavy Higgs bosons A, H, H⁺ and H⁺⁺ with the ATLAS detector

 $H \rightarrow \gamma \gamma \qquad H \rightarrow Z \gamma$

 $H \rightarrow hh$

 $A \rightarrow tt$

 $H^+ \rightarrow tb$

 $H \rightarrow ZZ$

 $A \rightarrow \tau \tau$

Jana Schaarschmidt (University of Washington) an behalf of the ATLAS collaboration

Particles and Nuclei International Conference 2017 – Beijing

 $H^{++} \rightarrow I^{\pm}I^{\pm}$

Overview

The talk contains 13 TeV ATLAS result with up to 36/fb of 2015/2016 data. ATLAS already recorded ~17/fb of 2017 data!

BSM Heavy Higgs results presented here:

- Charged Higgs ($H^+ \rightarrow tb$, τv , $H^{++} \rightarrow II$)
- Neutral Higgs to fermions ($\tau\tau$, $t\bar{t}$)
- Neutral Higgs to bosons (γγ, Ζγ, Vh, ZZ, WW, hh)

Check out Katherine's talk on non-standard and rare Higgs decays!

- Signal production in pairs, by Drell Yan process
- Signal process modelled with Pythia8 with left-right symmetry package
- Signal regions: Two, three or four leptons
- Main prompt backgrounds: WW, ZZ, WZ, ttW, ttZ, ttH (estimated using MC)
- Charge-fake background: $Z/\gamma^* \rightarrow II$, tt (estimated with data-driven method)

Selection:

- **:ion:** Electrons and muons: $p_{\tau} > 30$ GeV
 - Veto on b-jets
 - Veto on OS leptons close to Z mass

electron charge mis-ID:

Predominantly by bremsstrahlung:

- the photon converts

- the electron calorimeter cluster is matched to the wrong-charge track

```
- measured in Z \rightarrow ee data
```


- Etmiss trigger (70 or 90 GeV)
- At least three jets, one of them b-tagged
- veto on leptons (e/ μ)
- Largest background: jets faking $\tau_{_{had,}}$ estimated from data in bins of τ $p_{_{T}}$

- Final discriminant: m_{T} $m_{T} = \sqrt{2p_{T}^{\tau}E_{T}^{miss}(1 - \cos\Delta\phi_{\tau, E_{T}^{miss}})}$

4FS tb associated H^{+} production

Signal modelled with MG5_aMCatNLO (NLO 4FS implementation)

H⁺ produced with zero width

Model-independent limits on production of masses of 2 TeV Limits set on high tan β in MSSM for masses up to 550 GeV

Search for $H^{+} \rightarrow tb$

7 / 23

- Very challenging!
- Produced in 4FS together with a top and a bottom quark
- Dominated by systematics, in particular tt + bb, tt + cc
- Floating tt+HF normalisations
- Setting limits on low and high tan $\!\beta$ in MSSM models

Four signal regions employed, and four control regions to constrain systematics BDT trained for each mass hypothesis in each SR (5j3b, 5j \ge 4b, \ge 6j3b, \ge 6j \ge 4b)

Most powerful channel in the MSSM

Lephad and hadhad channels considered

b-tag and b-veto categories to enhance for b-associated or gluon fusion produced signal

ggF modelled with Powheg-Box, bbA modelled with MG5_aMCatNLO

Ditau mass reconstruction in transverse plane:

$$m_{\rm T}^{\rm tot} \equiv \sqrt{(\mathbf{p}_{\rm T}^{\tau_1} + p_{\rm T}^{\tau_2} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\tau_1} + \mathbf{p}_{\rm T}^{\tau_2} + \mathbf{E}_{\rm T}^{\rm miss})^2}$$

Dominant backgrounds:

jets faking taus, estimated via data-driven fake-factors

 $Z {\rightarrow} \tau \tau$ estimated from simulation

No excess, but substantial improvement over 2015 sensitivity

Deficit at low mass (statistical fluctuation)

Exclude mhmod+ model points with $\tan\beta > 5$ at 250 GeV up to $\tan\beta > 50$ at 1.5 TeV

Search for ttH / bbH $\rightarrow t\bar{t}$ ATLAS-CONF-2016-104

- No interference of heavy Higgs signal with background
- Selection optimized for search for vector-like quark T
- Events categorized by jet and b-jet multiplicity, and presence of large-R jets, and mass of b-quark pair $m_{bb}^{\min\Delta R}$ (8 categories simultaneously fit)
- Final discriminant: m_{eff} (scalar sum of p_{T} of lepton, jets and $p_{T,miss}$)

11/23

arXiv:1708.00212

12 / 23

- Signal is narrow width scalar, produced in gluon fusion
- Z decays to two same-flavor OS leptons (ee, $\mu\mu$ categories)
- Fully analytical fit to parametrized signal and background
- Background modelled by $f_{bkg}^k(x; b, a_k) = N(1 x^{1/3})^b x^{\sum_{j=0}^k a_k \log(x)^j}$ with k=0
- Upper limits on heavy scalar set between 250 GeV 2.4 TeV, though no events observed above ~1.5 TeV
- Largest local excess of 2.7 σ at 960 GeV, global significance 0.8 σ

Run Number: 309759, Event Number: 3797573939

Date: 2016-10-03 03:27:33 UTC

Search for $H \rightarrow \gamma \gamma$

arXiv:1707.04147

- Improved reconstruction of converted photons wrt. preliminary result
- Retrained regression algorithm for the energy determination
- E_{τ} cuts: 0.4*m, (leading), 0.3*m, (sub-leading)
- Excess at 750 GeV in 2015 not seen in 2016 dataset, combined significance $<1\sigma$

Search for $H \rightarrow ZZ \rightarrow IIII$ / $II\nu\nu$

Search for $H \to WW \to I \nu q q$

Production via ggF or qq (Drell Yan category) or via VBF**VBF** category: m_{jj} >770 GeV, $|\Delta \eta_{jj}|$ >4.7 (small-R tag jets)**DY** category:events that fail the VBF selection

qq either merged (large-R jet) or resolved (jj)

Large-R jet mass combines calorimeter and track information

Merged category further subdivided into low and high purity, defined by cut on D2 substructure variable

- No significant excess

- Small fluctuation around 1.7 TeV in VBF category, due to one event in tail of merged high-purity category

Run Number: 308047, Event Number: 969360152

Date: 2016-09-08 12:58:28 CEST

 $V \rightarrow qq$

36.1 /fb

Search for $A \rightarrow Zh_{125} \rightarrow vvbb / Ibb$ ATLAS-CONF-2017-055 20 / 23

0 or 2 lepton categories

g ODDODD

Merged and resolved categories

A

$Z \rightarrow vv$ or $Z \rightarrow II$, and $h \rightarrow bb$

Channel	Resolved	Merged	Resolved
	Signal regions	Signal regions	Control regions
0-lepton	1, 2, 3+ <i>b</i> -tag	1, 2 b-tag, and 1, 2 b-tag add. b-tag	_
2-lepton	1, 2, 3+ <i>b</i> -tag	1, 2 <i>b</i> -tag, and 1+2 <i>b</i> -tag add. b-tag	$1+2 b$ -tag , $3+b$ -tag $e\mu$ CR

Categories with additional b-tags to enhance bbA process

36.1 /fb

Search for $A \rightarrow Zh_{125} \rightarrow vvbb$ / IIbb ATLAS-CONF-2017-055 21/23

ATLAS

ATLAS

--36.1 fb⁻¹

Preliminary

3.2 – 13.3 /fb

Searches for $H/X \rightarrow h_{125}h_{125}$

Using the SM Higgs boson as a tool to search for new resonances Limits on non-resonant hh production:

bbbb: 430fb obs. (330fb exp.) ie. 29 x SM (using 13.3 /fb) bb $\gamma\gamma$: 3.9pb observed (5.4pb expected) $\gamma\gamma$ WW: 25.0pb observed (12.9 expected)

Large variety of BSM Heavy Higgs searches presented

Sophisticated analysis techniques employed: Different production modes, multi-variate techniques, sub-structure, many simultaneously fitted categories

Summary

Challenging channels tackled, eg. H/A \rightarrow tt, H⁺ \rightarrow tb, bbH(\rightarrow tt), ...

No significant excess observed

Limits considerably improved wrt. previous analyses, mass ranges expanded

2017 data not yet analysed

Total Run-2 luminosity expected to be ~100 /fb. We will turn every stone!

— Observed

-- Expected

± 1σ

+2σ

anß

tanβ

40

ATLAS Preliminar

MSSM m_h^{mod+} scenario, M_{SUS} H/A $\rightarrow \tau\tau$ 95% CL limits

√s = 13 TeV. 36.1 fb⁻¹

Backup

Two Higgs Doublet Model (2HDM)

Extremely rich phenomenology, countless models.

- \rightarrow Only specific class of models considered:
- No FCNC on tree level
- CP conservation in the Higgs sector

4 Types defined with different couplings of the particles to the doublets:

Model	u_R^i	d_R^i	e_R^i	One doublet is fermiophobic
Type I	Φ_2	Φ_2	Φ_2	One doublet couples to up, other to
Type II	Φ_2	Φ_1	Φ_1	 down-type (=MSSM like) One doublet couples to quarks as type-I, other with leptons as type-II One doublet couples to quarks as type-II,
Lepton-specific	Φ_2	Φ_2	Φ_1	
Flipped	Φ_2	Φ_1	Φ_2	

- Five Higgs bosons: h, H, A, H⁺, H⁻
- Free parameters: $\tan\beta$, m_{μ} , m_{μ} , m_{μ} , $m_{\mu+}$, α (mixing of h and H)
- Fixing m_b=125 GeV and other theoretical considerations about valid mass splittings reduce the phase space of these parameters in reality $\rightarrow m_{\alpha}$, tan β , cos(β - α)

Review: Branco et al arXiv:1106.0034

other with leptons as type-I

MSSM bechmark scenarios for the LHC

m_{H⁺} [GeV]