

Search for non-standard and rare decays of the Higgs boson with the ATLAS detector

Katharine Leney on behalf of the ATLAS Collaboration

2nd September 2017

Introduction

- Standard Model still leaves plenty of unanswered questions.
 - Likely to be an effective field theory (i.e. the limit at currently accessible energy regimes of a more fundamental theory with new degrees of freedom).

- Higgs boson is (still) new territory may provide a portal into new physics.
 - Many allowed decay modes not measured accurately (if at all).
 - New decay modes or deviations from SM predictions would be a sign of new physics.

- Higgs boson is (still) new territory may provide a portal into new physics.
 - Many allowed decay modes not measured accurately (if at all).
 - New decay modes or deviations from SM predictions would be a sign of new physics.

- Higgs boson is (still) new territory may provide a portal into new physics.
 - Many allowed decay modes not measured accurately (if at all).
 - New decay modes or deviations from SM predictions would be a sign of new physics.

- Higgs boson is (still) new territory may provide a portal into new physics.
 - Many allowed decay modes not measured accurately (if at all).
 - New decay modes or deviations from SM predictions would be a sign of new physics.

$H \rightarrow Z\gamma$

arXiv:1708.00212 submitted to JHEP

- Similar branching ratio to $H \rightarrow \gamma \gamma$, but lower sensitivity because of $BR(Z \rightarrow \ell \ell)$.
- $H \rightarrow Z\gamma$ branching ratio can deviate from SM predictions if:
 - H is a neutral scalar of different origin.
 - H is a composite state.
 - In models with additional colourless charged scalars, leptons or vector bosons coupled to the Higgs boson and exchanged in the $H \rightarrow Z\gamma$ loop.

$H \rightarrow Z\gamma$

- Consider scenarios where:
 - H is SM Higgs boson ($m_H = 125.09$ GeV).
 - "H" is some new resonance (300 GeV < m_H < 2.4 TeV) \rightarrow J. Schaarschmidt's talk.
- Select events with two same-flavour opposite-sign leptons and one photon.
- Optimise to select events produced by gluon-fusion and VBF production.
 - VBF events required to have two jets with large $\Delta \eta$ and selected using BDT.
- Events separated into six categories:

$H \rightarrow Z\gamma$

arXiv:1708.00212 submitted to JHEP

- Signal extracted by signal+background fit to $m(Z\gamma)$.
 - Good mass resolution is essential.
 - Constrained kinematic fit applied to reconstruct 4-momenta of $Z \rightarrow \ell \ell$ candidates, improving m($Z\gamma$) resolution.
- Signal modelled by a double-sided Crystal Ball function.

Main Backgrounds

Non-resonant $Z\gamma$ production Z+jets (jet is mis-identified as a γ)

1/N dN/dm_{ZY} [GeV⁻¹] ATLAS Simulation 0.25 s = 13 TeV - ee $pp \rightarrow H \rightarrow Z\gamma$ ee parameterised 0.2 - m_H = 125 GeV - μμ Low p_T … μμ parameterised 0.15 0.1 0.05 MC - Fit 0.0 -0.0130 115 120 125 135 m_{zy} [GeV]

- Background shape taken from $Z+\gamma$ (fast) simulation.
 - Z+jets contribution (< 20% in all categories) estimated using data-driven methods in region with looser γ isolation applied.
 - Bernstein polynomials used to fit smoothly-falling background spectrum.

95% C.L. upper limit	Expected without H→Zγ	Expected with H→Zγ	Observed
$\frac{\sigma \times BR}{(\sigma \times BR)_{SM}}$	4.4	5.2	6.6

2nd September 2017

$H \rightarrow \phi \gamma, H \rightarrow \rho \gamma$

ATLAS-CONF-2017-057

Probe the Higgs boson couplings to light quarks

- Require two high p_T isolated tracks consistent with ϕ/ρ mass recoiling against high $p_T \gamma$.
- Cut on p_T of ϕ/ρ dependent on three body invariant mass.

$H \rightarrow \phi \gamma, H \rightarrow \rho \gamma$

- Backgrounds estimated using templates derived from data to describe kinematic distributions.
 - $K^+K^-\gamma$ and $\pi^+\pi^-\gamma$ events selected in data, with looser isolation and $p_T(\phi, \rho)$ requirements.
 - PDFs constructed to describe distributions of relevant variables.
- <u>Main Backgrounds</u> Inclusive γ+jet Multi-jet

- Model validated in validation regions by adding:
 - Meson p_T requirement (VR1).
 - γ isolation (VR2).
 - Meson isolation requirement (VR3).

2nd September 2017

Katharine Leney

Further validation in mass sidebands

$H \rightarrow \phi \gamma, H \rightarrow \rho \gamma$

- No significant excess above background.
- Set limits on Z decays to $\phi\gamma$ and $\rho\gamma$ as well as Higgs.
- Un-binned maximum likelihood fit used to extract limits.

Branching Fraction Limit (95% CL)	Expected	Observed
$\mathcal{B}\left(H\to\phi\gamma\right)\left[\ 10^{-4}\ \right]$	$4.2^{+1.8}_{-1.2}$	4.8
$\mathcal{B}\left(Z \to \phi \gamma\right) \left[\ 10^{-6} \ \right]$	$1.3^{+0.6}_{-0.4}$	0.9
$\mathcal{B}\left(H\to\rho\gamma\right)\left[\ 10^{-4}\ \right]$	$8.4^{+4.1}_{-2.4}$	8.8
$\mathcal{B}\left(Z\to\rho\gamma\right)\left[\ 10^{-6}\ \right]$	33^{+13}_{-9}	25

- Significant improvement (1 to 2 orders of magnitude) over previous Run 2 result
 - Phys. Rev. Lett. 117, 111802 (2016)

- Search for $pp \rightarrow ZH \rightarrow \ell \ell + E_T^{miss}$.
 - Clean signature, thanks to $Z \rightarrow ee, \mu\mu$ decay.
 - Large missing energy from invisible Higgs decay.

Standard Model

• Select events with two e or $\mu,$ compatible with coming from Z, and large $E_T^{miss}.$

ATLAS-CONF-2017-040

Main Backgrounds

ZZ: Estimated from simulation. WZ: Shape from MC, scale derived in 3ℓ region. Z+jets: "ABCD" method using E_T^{miss} and H_T/E_T^{miss} .

- Look for excess in E_T^{miss} spectrum.
 - No significant excess wrt SM background.
 - Small excess (2.2 σ) in $\mu\mu$ channel \rightarrow 1.5 σ in combination.

ATLAS-CONF-2017-040

$H \rightarrow Z_{(d)}Z_d \rightarrow 4\ell, H \rightarrow aa \rightarrow 4\mu \Big|_{\underline{CONF-2017-042}}^{\underline{ATLAS-}}$

- Events with four light leptons (e/μ) are selected.
 - Only 4μ channel considered for $H \rightarrow aa$ channel, since a couples to mass.

ATLAS- $H \rightarrow Z_{(d)}Z_d \rightarrow 4\ell, H \rightarrow aa \rightarrow 4\mu$ NF-2017-042

- For each event, consider four-lepton quadruplets in all possible permutations of pairs of same-flavour opposite-sign leptons.
 - $H \rightarrow Z_d Z_d$ and $H \rightarrow aa$ channels: dilepton pairs with smallest mass difference are selected.
 - $\underline{H \rightarrow ZZ_d \text{ channel}}$: select combination with leading dilepton pair invariant mass closest to the Z mass.
 - Dilepton masses compatible with J/ ψ and Y(1,2,3S) are not allowed.

 $\frac{\text{Main Backgrounds}}{ZZ^* \rightarrow 4\ell}$ $H \rightarrow ZZ^* \rightarrow 4\ell$

- Dominant backgrounds estimated using simulation.
- Validated in four mass sideband regions dominated by H→ZZ*, non-resonant ZZ* or mis-paired 4e/4µ events.

 $H \rightarrow Z_{(d)}Z_d \rightarrow 4\ell, H \rightarrow aa \rightarrow 4\mu$

- Mass of intermediate boson(s) used as observable.
- No significant excess observed in any channel.
 - Largest deviation from SM prediction caused by single event passing $H \rightarrow Z_d Z_d$ selection with $\langle m\ell\ell \rangle \sim 20$ GeV.
 - 3.8σ local (2.8σ global) significance.

Katharine Leney

ATLAS-

NF-2017-042

 $H \rightarrow Z_{(d)}Z_d \rightarrow 4\ell, H \rightarrow aa \rightarrow 4\mu$ CONF-201<u>7-042</u>

ATLAS-

Exotic and Rare Higgs Decay Modes: Latest ATLAS Results

- Higgs boson discovery opens up a new portal to searching for new physics.
 - Either by looking for deviations from SM predictions, or by direct searches.
 - Many rare Higgs decays have not been observed yet.
- Wide variety of measurements and searches have been performed by ATLAS in this field.
 - Only most recent ATLAS results shown today.

H→Zγ	arXiv:1708.00212, submitted to JHEP
Η→φγ/ργ	<u>ATLAS-CONF-2017-057</u>
H→Invisible	<u>ATLAS-CONF-2017-040</u>
H→ZZ _d /Z _d Z _d →4ℓ H→aa→4µ	<u>ATLAS-CONF-2017-042</u>

All ATLAS Higgs results can be found here: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults</u>

Back Up

$H \rightarrow Z\gamma$ (Resonance Search)

$H \rightarrow \varphi \gamma, H \rightarrow \rho \gamma$

	Observed Yields (Mean Expected Background)				Expected Signal Yeilds		
	Mass Range [GeV]			Z	H		
	All		81-101		120 - 130	$B[10^{-6}]$	$B[10^{-4}]$
$\phi\gamma$	12051	3364	(3500 ± 30)	1076	(1038 ± 9)	83 ± 7	15.6 ± 1.5
$ ho\gamma$	58702	12583	(12660 ± 60)	5473	(5450 ± 30)	7.5 ± 0.6	17.0 ± 1.7

$H \rightarrow Z_{(d)}Z_d \rightarrow 4\ell$, $H \rightarrow aa \rightarrow 4\mu$

Validation regions

Invert m _{14,32} cut	Targets 4e and 4µ events that have been mis-paired
High mass selection, invert m ₁₂ < 64 GeV cut	Targets ZZ* production with 115 < m _{4ℓ} < 130 GeV
High mass selection, invert 115 < m _{4ℓ} < 130 GeV cut	Targets non-resonant ZZ production
Low mass selection, invert 120 < m _{4ℓ} < 130 GeV cut	Targets non-resonant ZZ production