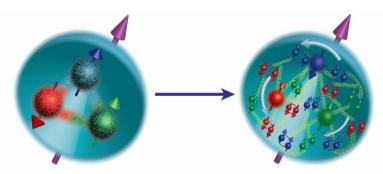


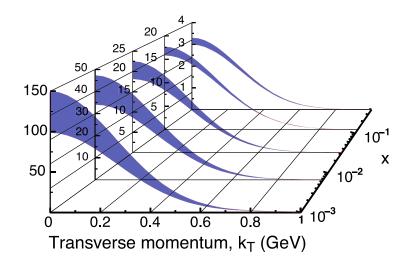
Measuring the gluon Sivers function at a future Electron-Ion Collider

Speaker: Liang Zheng


Central China Normal University

In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU) Zhongbao Yin (CCNU)

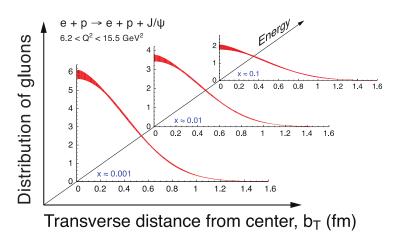
Exploring nucleon structure


- Nucleon is a dynamical system of quarks and gluons
 - How are the partons distributed in space and momentum inside the nucleon?
 - How are these quark and gluon distributions correlated with the overall nucleon properties, such as spin direction?
 - Spin as fundamental intrinsic property and also as a mechanism to do tomography of many body system of quarks and gluons
- EIC: polarized collider to have full access to the nucleon dynamics.

2+1 D partonic image of the nucleon

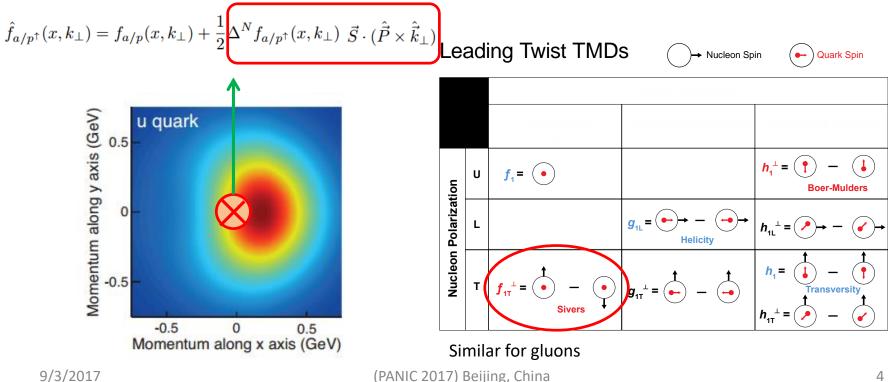
Transverse Momentum Dependent parton distributions (TMDs)

- Spin dependent 3D momentum space image
- Semi-inclusive DIS
- f(x,k_T)

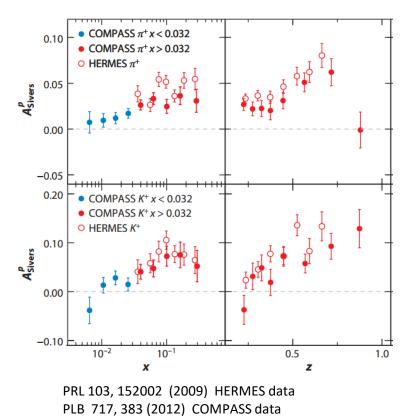


Generalized Parton Distributions (GPDs)

 Spin dependent 2D coordinate space (transverse)


+ 1D momentum space (longitudinal) image

- exclusive DIS
- f(x,b_T)


TMDs and Sivers function

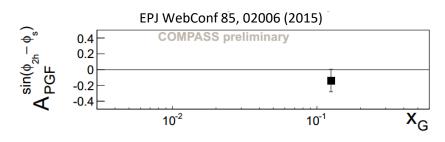
- Transverse Momentum Dependent (TMD) parton distributions provide useful tools to image the nucleon 3D structure in momentum space.
- Sivers function describes the correlation of k_T and S_T .
- Non-trivial QCD color gauge invariance.


Current knowledge to quark Sivers

 $\frac{d\sigma}{dx\,dy\,d\phi_S\,dz\,d\phi_h\,dP_{hT}^2} \propto F_{UU,T} + |\mathbf{S}_{\perp}|\sin(\phi_h - \phi_S)F_{UT,T}^{\sin(\phi_h - \phi_S)} + \dots$

Annu. Rev. Nucl. Part. Sci. 65 429 (2015)

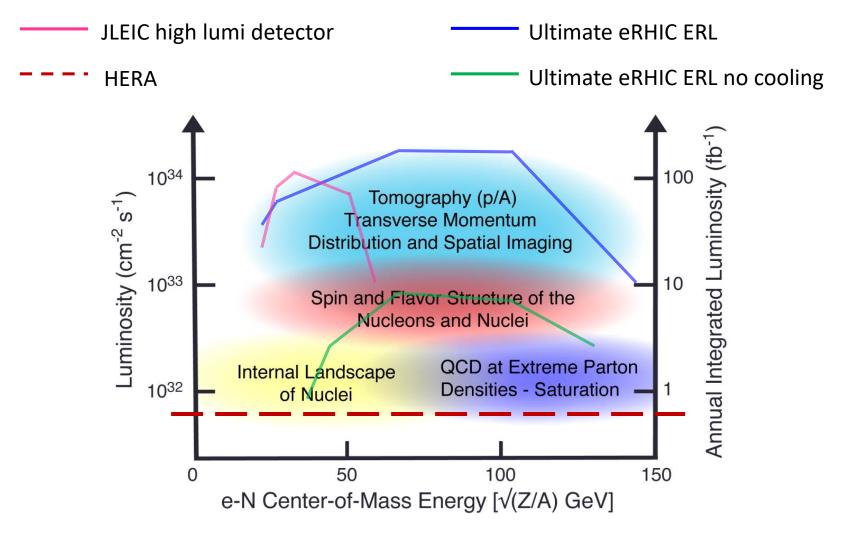
- Accessed with SIDIS measurements.
- Sizable Sivers effect.
- u, d quark Sivers with opposite sign.
- Subject to large uncertainty.

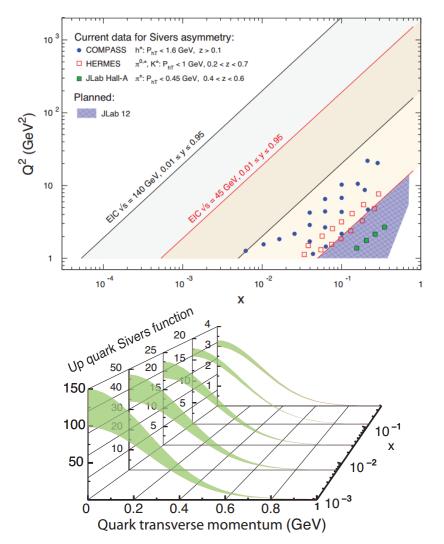

JHEP 04(2017) Anselmino et. al.

Current constraints on gluon Sivers

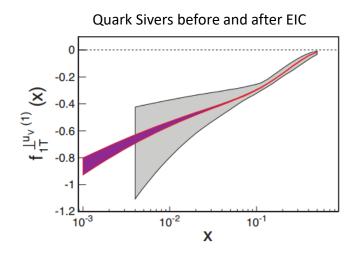
0.004 U. Alesio, et. Al., JHEP 09, 119 (2015) 0.002 Å 0 -0.002 $\Delta \chi^2 = 10\% \chi^2_{min}$ $\Delta \gamma^2 = 2\% \chi^2_{min}$ -0.004 KRE - SIDIS1 gluon 2 3 5 4 6 1 P_T (GeV) 100 $\Delta \chi^2 / \chi^2_{min} = 10\%$ $\Delta \chi^2 / \chi^2_{\rm min} = 2\%$ 10 Ref. [2] 1 $\Delta^{\mathsf{Nf}_{\mathsf{g}}^{(1)}(\mathsf{x})}$ 0.1 0.01 **KRE - SIDIS1** 0.001 0.0001 0.01 0.1 х

Extraction based on A_N data at RHIC


Extraction on COMPASS data


$$A_{PGF}^{\sin(\phi_{2h}-\phi_S)} = -0.14 \pm 0.15$$
(stat.)
 $\langle x_G \rangle = 0.126$

- Effective gluon Sivers from A_N may differ from the actual gluon Sivers in TMD.
- Limited x and Q² range explored in SIDIS. Still allow for gluon Sivers contributions of 1/N_c.
- No hard constraints at this moment.


EIC Physics vs Luminosity and Energy

Studying Sivers in the EIC era


- Disentangle Sivers and Collins asymmetries.
- Extend the current Sivers data to smaller x.
- Large Q², x, coverage to pin down TMD evolution.

Accessing gluon Sivers at EIC

e

P_{T1}

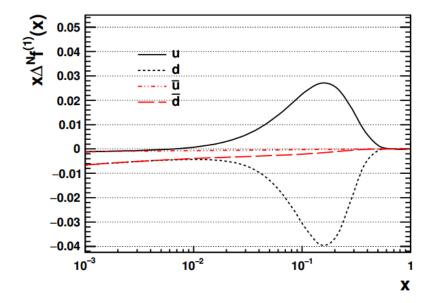
s: center-of-mass energy squared

Q²: resolution power

- **x**_B: the fraction of the nucleon's momentum carried by the struck quark (0<x<1)
- y: inelasticity

Treatable single spin asymmetry (SSA) sensitive to gluon Sivers

 P_{T2}

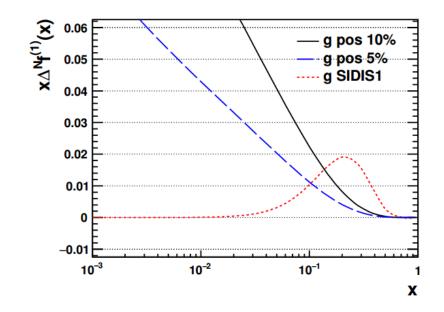

 $\boldsymbol{\phi}_k$

$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \frac{\Delta^{N} f_{g/p^{\uparrow}}(x, k_{\perp})}{f_{1}^{g}(x_{g}, k_{\perp})}$$

Inputs to the model calculation

$$\Delta^N f_{a/p^{\uparrow}}(x,k_{\perp}) = 2\mathcal{N}_a(x)f_{a/p}(x,k_{\perp})h(k_{\perp})$$

$$w = \frac{\Delta^N f_{a/p\uparrow}(x, k_\perp, Q^2)}{2f_{a/p}(x, k_\perp, Q^2)}.$$
$$A_{UT} = R_g \frac{\Sigma_i^{N_g} w_i}{N_g} + R_q \frac{\Sigma_i^{N_q} w_i}{N_q}$$



Quark Sivers: JHEP 04(2017) Anselmino et. al. u and d quarks

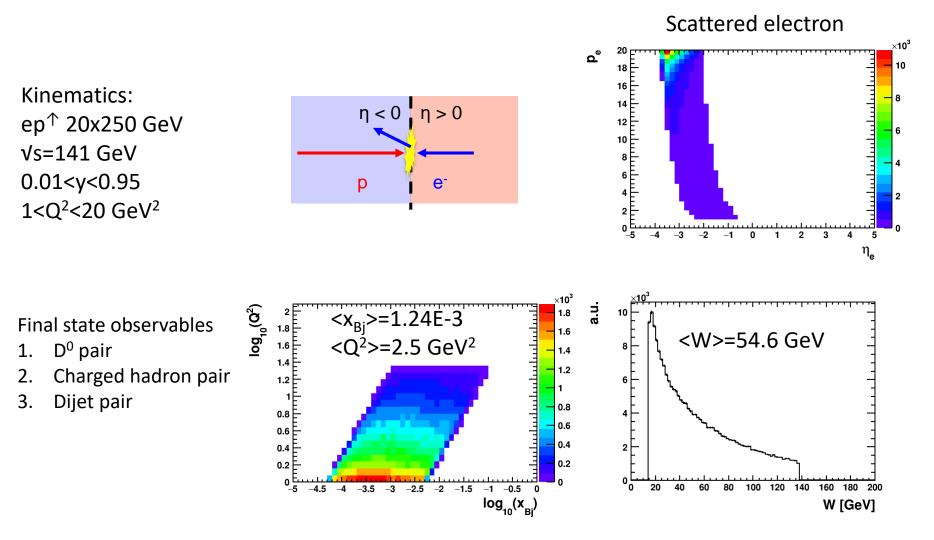
Gluon Sivers: JHEP 09 (2015) 119 D' Alesio et. al. u, d + Kretzer FF (SIDIS1)

Positivity bound ansatz:

 $f_{1T}^{\perp g} = -\frac{2\sigma M_p}{k_{\perp}^2 + \sigma^2} f_g(x, k_{\perp}), \quad \sigma = 0.8$

Confronting simulation with Data

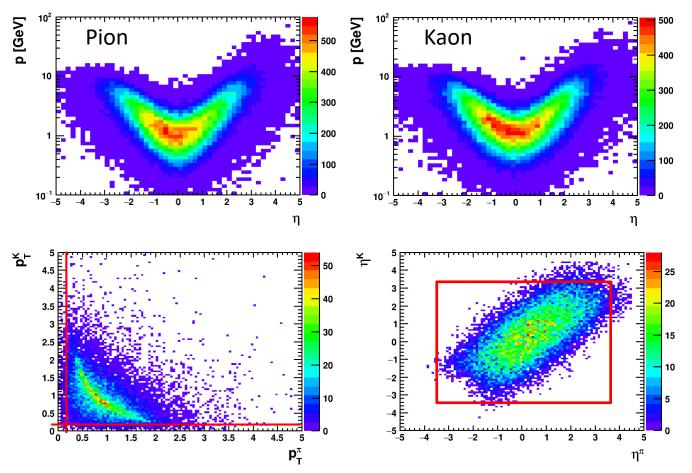
Comparing with charged hadron density measurements from HERA


Data from EPJC 73, 2406 (2013)

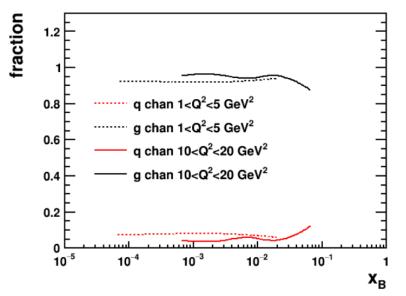
Kinematics: ep 27.6 GeV x 920 GeV $5 < Q^2 < 10, 0.0005 < x_{Bj} < 0.002$ p_T^*, η^* defined in gamma-hadron center of mass frame

0<n*<1.5 1.5<n*<5 $dn/(Ndp_T^*)$ dn/(Ndp_*) 🕂 H1 data 🕂 H1 data PYTHIA PYTHIA 10⁻¹ 10 10^{-2} 10^{-2} 10^{-3} 10^{-3} 10 6 3 6 7 8 9 10 2 3 5 2 4 5 р_т* **р**_*

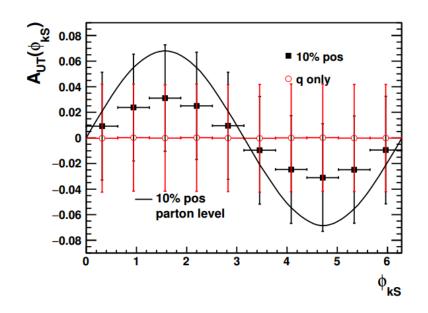
H1 charged particle density data reasonably described by simulations.


EIC setup for gluon SSA study

D meson pair selection

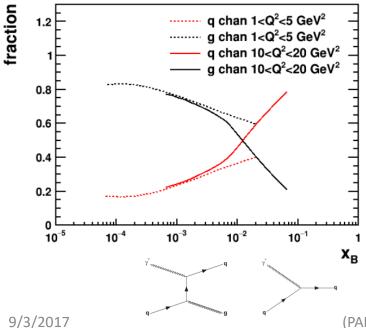

Branching ratio: 3.9% $D^0(c\bar{u}) \rightarrow \pi^+(u\bar{d})K^-(s\bar{u})$ $\bar{D}^0(\bar{c}u) \rightarrow \pi^-(\bar{u}d)K^+(u\bar{s})$

- Acceptance for PID is assumed to be |η|<3.5
- Decay products from D mesons are mostly less than 10 GeV in mid-rapidity.
- Decay products p_T>0.2 GeV.

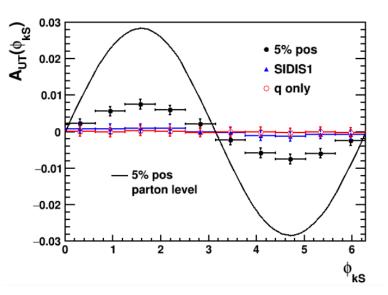


Projections for the SSA with open charm probe

 $ep^{\uparrow} 20x250 \text{ GeV}$ $D^{0} \text{ cut:}$ D ->K + pi (3.9%)Acceptance $|\eta|^{pi/K} < 3.5$ $p_{T}^{pi/K} > 0.2 \text{ GeV}, p_{T}^{D} > 0.7 \text{ GeV}, z^{D} > 0.1$ $\int Ldt = 10 \text{ fb}^{-1}$



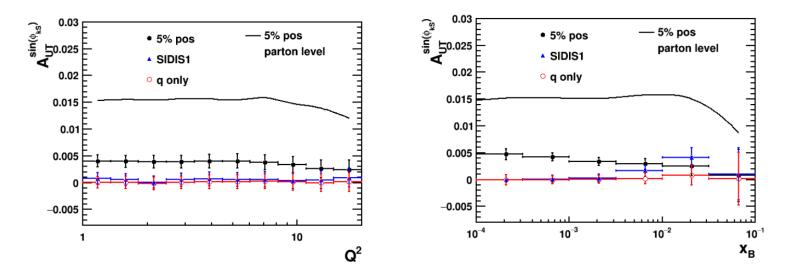
- Gluon initiated events account for 90% of D meson production
- D can be regarded as a good parton kinematics proxy
- Statistics not enough to resolve the gluon Sivers level even on 10% positivity bound



Projections on the SSA with charged dihadron probe

Kinematic cuts: ep 20x250 GeV 0.01<y<0.95 1<Q²<20 GeV² p_{τ} >1.7 GeV, z_{h} >0.1, $|\eta|$ <4.5 Back-to-back limit: $k_{\tau}' < 0.7 P_{\tau}'$ $Ldt = 10 \text{ fb}^{-1}$

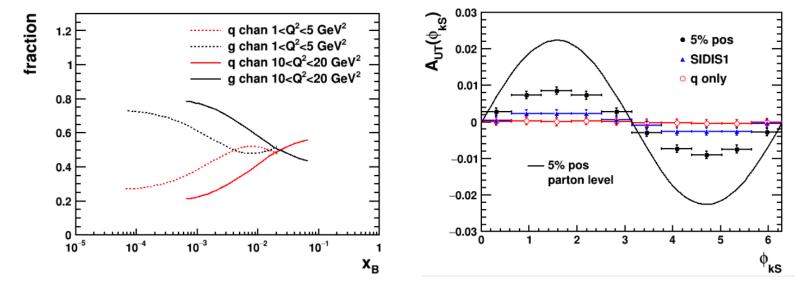
- Gluon initiated process account for a large fraction of events at small x_{B}
- Smear to parton level asymmetry becomes stronger
- Statistically more favored than open charm, resolve 5% positivity bound gluon Sivers size



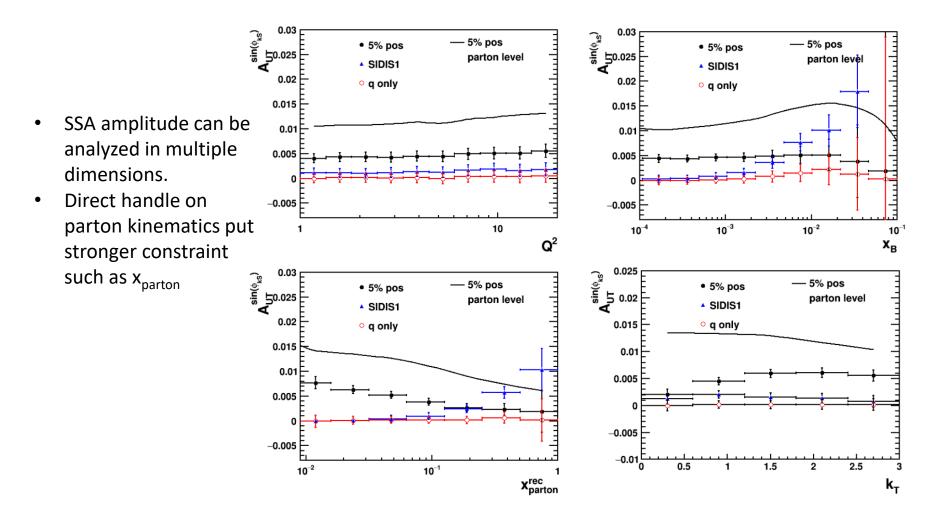
Projections on the SSA with charged dihadron probe

Single out the asymmetry amplitude

 $A_{UT}^{\sin(\phi_{kS})} = \frac{\int d\phi_{kS} (d\sigma^{\uparrow} - d\sigma^{\downarrow}) \sin(\phi_{kS})}{\int d\phi_{kS} (d\sigma^{\uparrow} + d\sigma^{\downarrow})}$


- Asymmetry size dependence on xB, Q2 can be identified with 5% positivity bound
- Clearer sense of direction to distinguish model discrepancy in x_B behavior
- No significant Q² trend as missing TMD evolution.

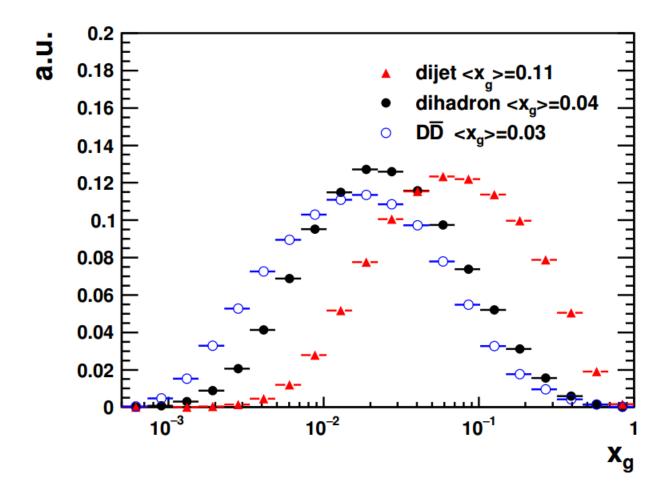
Projections on the SSA with dijet probe


Kinematic cuts: ep 20x250 GeV 0.01 < y < 0.95 $1 < Q^2 < 20 \text{ GeV}^2$ Anti- k_T , R=1, jet constituent: $p_T > 250 \text{ MeV}$, $\pi/K/p/\gamma$, $|\eta| < 4.5$ $p_T^{\text{jet1}} > 4.5 \text{ GeV}$, $p_T^{\text{jet2}} > 4 \text{ GeV}$ $\int \text{Ldt} = 10 \text{ fb}^{-1}$

- Gluon initiated process still dominant at small x_B
- Stronger final state observable to parton kinematics correlation
- Resolution down to 5% positivity bound gluon Sivers size

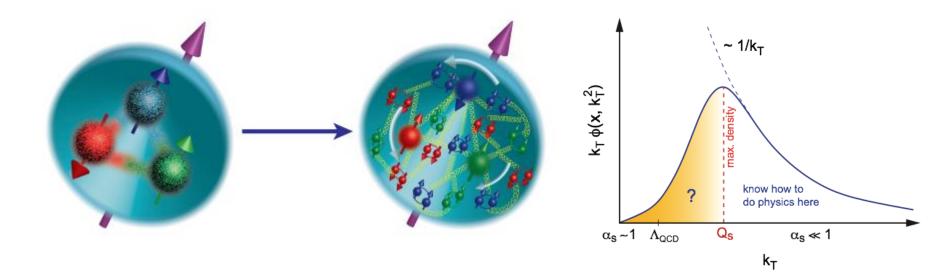
(PANIC 2017) Beijing, China

Projections on the SSA with dijet probe



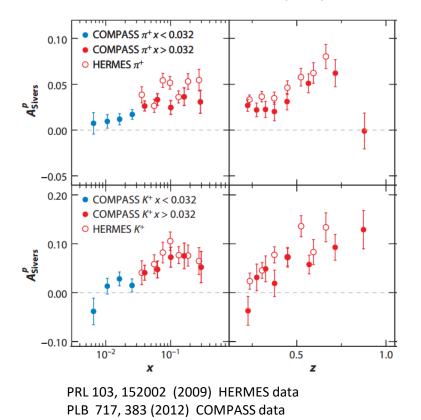
Summary

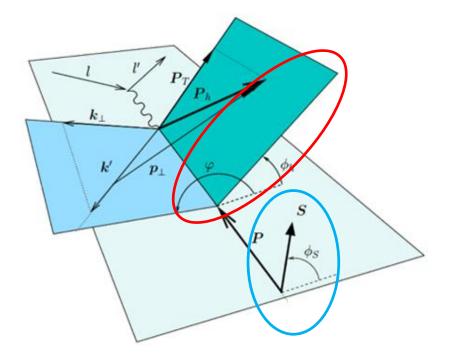
- Gluon Sivers function is an ingredient of complete 3D imaging of nucleon.
- It can be uniquely accessible and constrained in a wide kinematic range at EIC.
- Charged dihadron and dijet methods are more statistically favored compared to the open charm production.
- Different probes can be complementary to each other at EIC.



Explored x_g in different probes

Nucleon structure and Sivers function


- Collisions on the hadronic objects as incoherent superposition off partonic constituents.
- TMD framework provides a useful tool to image the nucleon structure in 2+1D momentum space.



Accessing Sivers in SIDIS

 $\frac{d\sigma}{dx\,dy\,d\phi_S\,dz\,d\phi_h\,dP_{hT}^2} \propto F_{UU,T} + |\mathbf{S}_{\perp}|\sin(\phi_h - \phi_S)F_{UT,T}^{\sin(\phi_h - \phi_S)} + \dots$

Annu. Rev. Nucl. Part. Sci. 65 429 (2015)

Accessing gluon Sivers at EIC

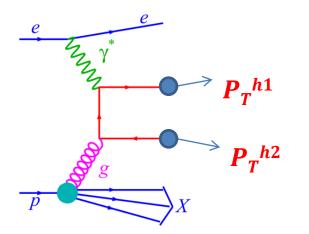
Treatable single spin asymmetry (SSA) sensitive to gluon Sivers

$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \frac{\Delta^{N} f_{g/p^{\uparrow}}(x, k_{\perp})}{f_{1}^{g}(x_{g}, k_{\perp})}$$

trun

Jet₂

 $\boldsymbol{\phi}_k$


КŦ

•*

Jet₁

Accessing gluon Sivers at an EIC

$$\frac{d\sigma_{\text{tot}}^{\gamma^* + p^{\uparrow} \to h_1 + h_2 + X}}{dz_{h1} dz_{h2} d^2 p_{h1\perp} d^2 p_{h2\perp}} = C \int_{z_{h1}}^{1 - z_{h2}} \sum_{q} dz_q \frac{z_q (1 - z_q)}{z_{h2}^2 z_{h1}^2} d^2 p_{1\perp} d^2 p_{2\perp} \hat{f}_{g/p^{\uparrow}}(x_g, k_{\perp})$$
$$\times \mathcal{H}_{\text{tot}}^{\gamma^* g \to q\bar{q}}(z_q, k_{1\perp}, k_{2\perp}) e_q^2 D_{h1/q}(\frac{z_{h1}}{z_q}, p_{1\perp}) D_{h2/\bar{q}}(\frac{z_{h2}}{1 - z_q}, p_{2\perp})$$

Treatable single spin asymmetry (SSA) sensitive to gluon Sivers

$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \frac{\Delta^{N} f_{g/p^{\uparrow}}(x, k_{\perp})}{f_{1}^{g}(x_{g}, k_{\perp})}$$

PYTHIA confronted with HERA data

dơ/dŋ [nb]

35

30

25

20

15

10

0

-1.5

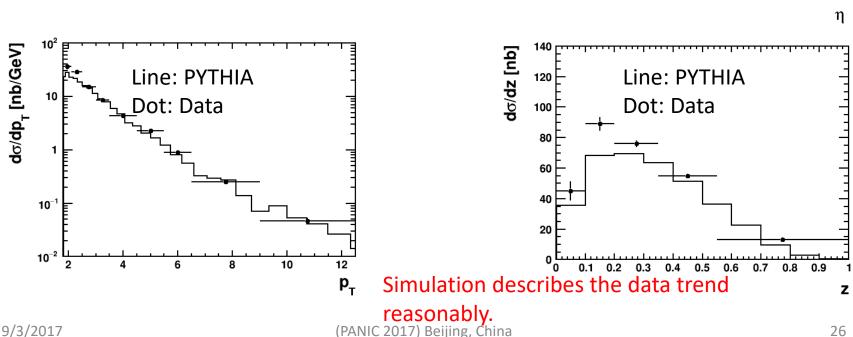
-1

-0.5

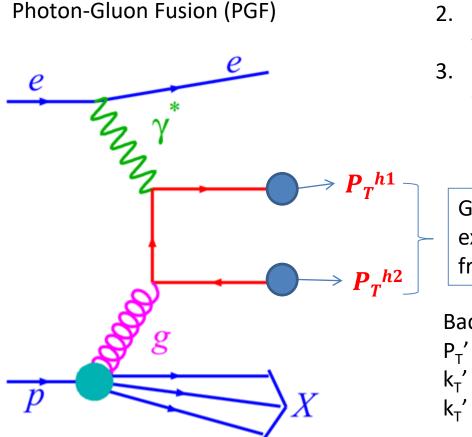
Line: PYTHIA

0.5

1.5


1

0


Dot: Data

Data taken from: EPJC 72, 1995 (2012)

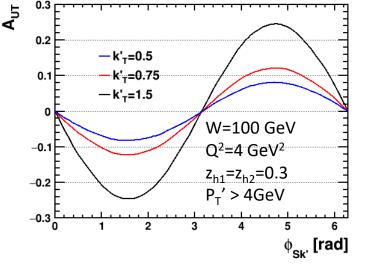
Comparing with D* measurements from HERA ep 27.6 GeV x 920 GeV Q²<2 GeV², 100<W<285 GeV, |η|<1.5 p_{T} , η defined in gamma-hadron center of mass frame

Accessing gluon dynamics DIS collisions

- 1. Tag photon-gluon fusion events.
- 2. Find back-to-back hadron pairs from the quark-antiquark jet.
- Reconstruct the gluon dynamics with the hadron pair information.

Gluon information can be extracted with the hadron pairs from the quark-antiquark jet.

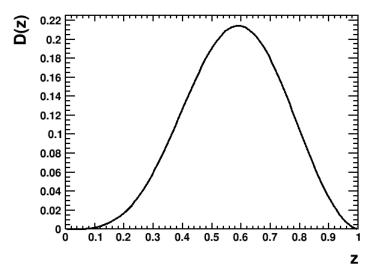
Back-to-back limit: $P_{T}' = |P_{T}^{h_{1}} - P_{T}^{h_{2}}|/2$ $k_{T}' = |P_{T}^{h_{1}} + P_{T}^{h_{2}}|$ $k_{T}' << P_{T}'$

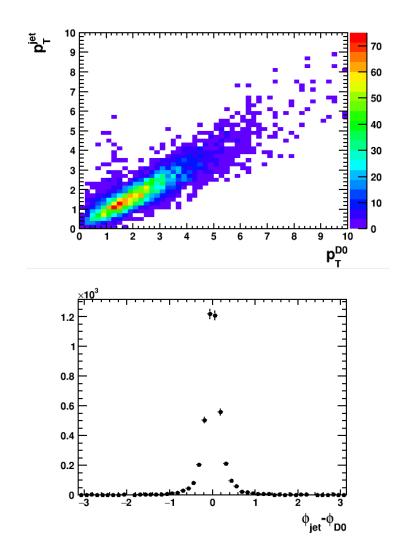

Theoretical framework for the model calculation

 $\times \mathcal{H}_{\rm tot}^{\gamma^* g \to q\bar{q}}(z_q, k_{1\perp}, k_{2\perp}) e_q^2 D_{h1/q}(\frac{z_{h1}}{z_a}, p_{1\perp}) D_{h2/\bar{q}}(\frac{z_{h2}}{1-z_a}, p_{2\perp})$

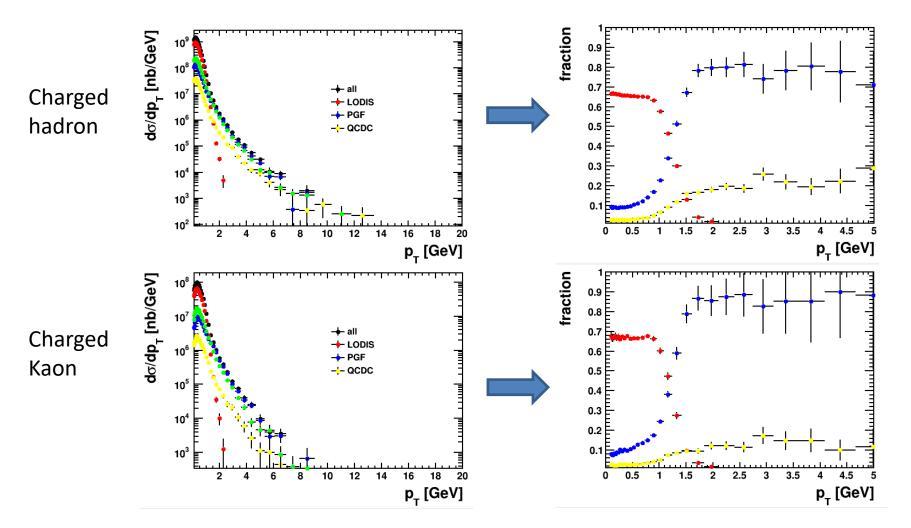
 $\frac{d\sigma_{\text{tot}}^{\gamma^* + p^{\uparrow} \to h_1 + h_2 + X}}{dz_{h1} dz_{h2} d^2 p_{h1\perp} d^2 p_{h2\perp}} = C \int_{z_{h1}}^{1 - z_{h2}} \sum_{q} dz_q \frac{z_q (1 - z_q)}{z_{h2}^2 z_{h1}^2} d^2 p_{1\perp} d^2 p_{2\perp} \hat{f}_{g/p^{\uparrow}}(x_g, k_{\perp})$

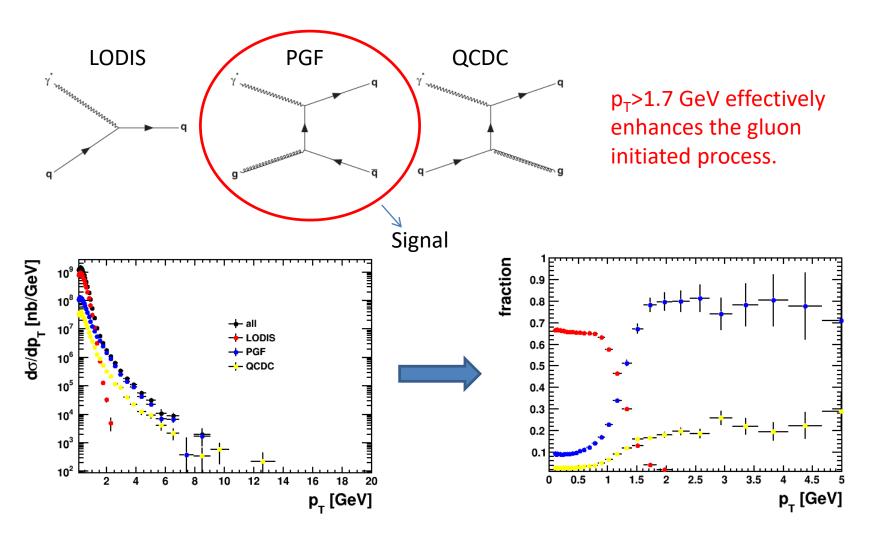
$$A_{UT} = rac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto rac{\Delta^N f_{g/p^{\uparrow}}(x, k_{\perp})}{f_1^g(x_g, k_{\perp})}$$

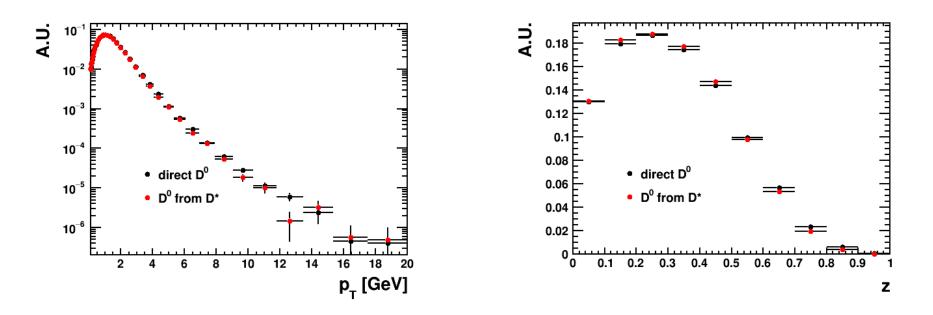

$$\begin{aligned} \hat{f}_{a/p^{\uparrow}}(x,k_{\perp}) &= f_{a/p}(x,k_{\perp}) - f_{1T}^{\perp a}(x,k_{\perp}) \frac{\vec{S} \cdot (\hat{\vec{P}} \times \vec{k}_{\perp})}{M_p} \\ f_{1T}^{\perp a}(x,k_{\perp}) &= \frac{2\sigma M_p}{k_{\perp}^2 + \sigma^2} f_1^g(x,k_{\perp}) \end{aligned}$$


- A negative gluon Sivers saturating the positivity bound is assumed.
- Stronger asymmetry size observed for larger k_T'.

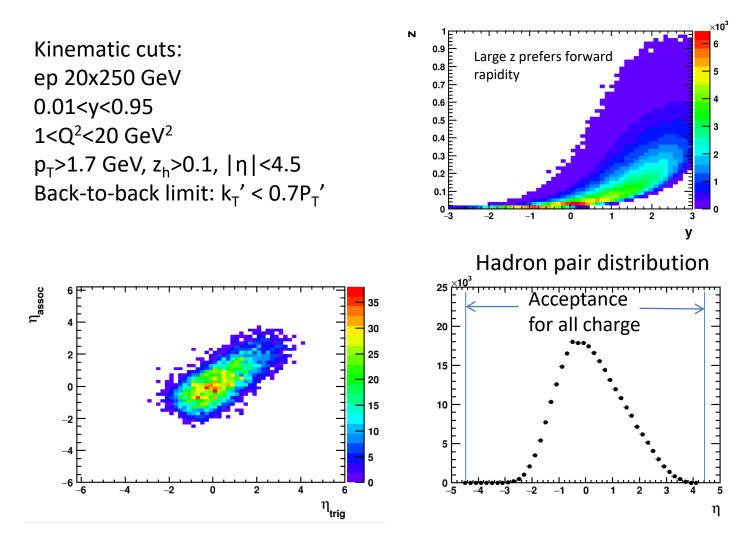
 $\phi_{Sk'} = \phi_S - \phi_{k'_T}$


D⁰ as charm quark proxy


D meson takes a large fraction of the charm quark energy, serves as a proxy to the charm jet information.


Charged hadron vs kaon spectrum

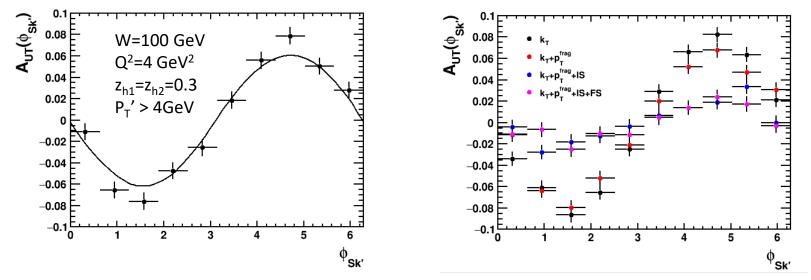
Dihadron pair selection



D⁰ feed-down from D*

D⁰ from D* decay similar to the directly generated D⁰s, therefore all D⁰s are analyzed.

Dihadron pair selection

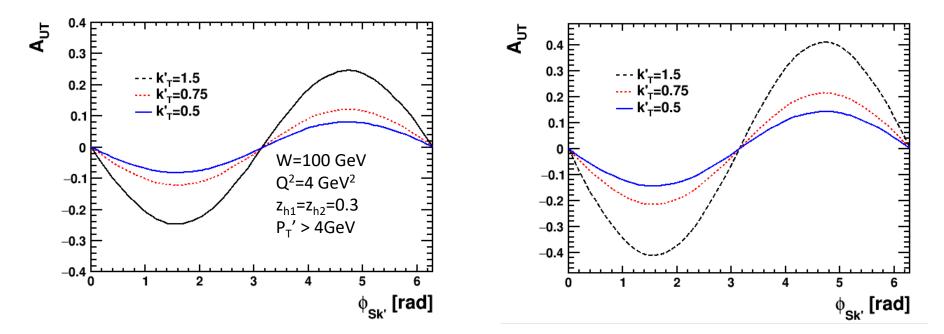

Weighting strategy vs numerical estimation

A_{UT} can be evaluated with the weighting based on input Sivers function

$$A_i = \frac{1}{N_i} \sum_{k=1}^{N_i} w_k$$

$$w_k = \frac{\Delta^N f_{a/p^{\uparrow}}(x, k_{\perp})}{2f_{a/p}(x, k_{\perp})}$$

- Weighted results agree with the numerical estimations.
- Initial state parton shower suppresses the azimuthal asymmetry significantly.



(PANIC 2017) Beijing, China

Numerical estimation of gluon SSA with positivity bound

$$D^0 < p_T^2 >_{frag} = 0.64$$

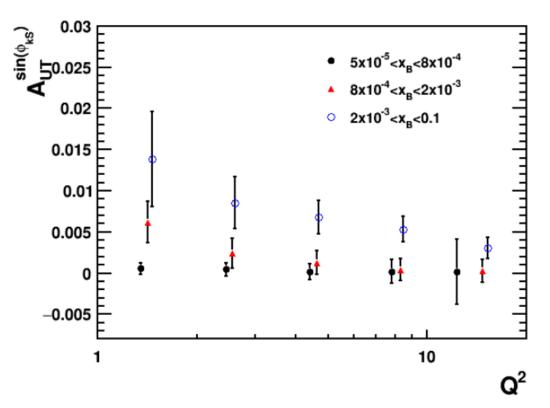
Charged dihadron $\langle p_T^2 \rangle_{frag} = 0.2$

Collection of different probes

Event sample summary: ep 20x250 GeV sqrt(s)=141 GeV 0.01<y<0.95 1<Q²<20 GeV²

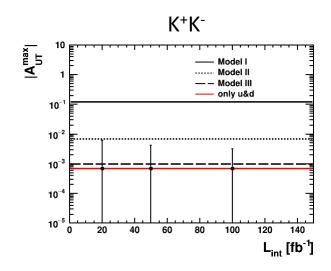
 $\begin{aligned} \sigma_{tot} = 562.5 \text{ nb (all events)} \\ \sigma_{dihadron} = 5.0E-1 \text{ nb, Gluon initiated: 80\%} \\ \sigma_{K+K-} = 1.6E-2 \text{ nb, Gluon initiated: 94\%} \\ \sigma_{DDbar pair} = 2.4E-4 \text{ nb, Gluon initiated: 100\%} \\ \sigma_{dihadron} & \sim 31\sigma_{K+K-} \sim 67 \sigma_{DDbar pair} \end{aligned}$

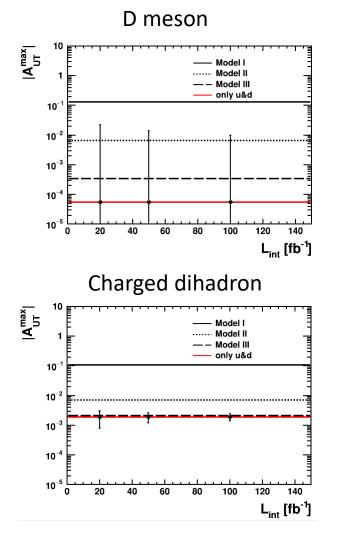
dihadron cuts: Acceptance $|\eta|$ <4.5 z>0.1, p_T>1.7 GeV, Correlation limit: k_T' < 0.7P_T'


K+K- cuts: Acceptance $|\eta| < 1$ z>0.1, p_T>1.7 GeV, Correlation limit: $k_T' < 0.7P_T'$

 D^{0} cut: D->K + pi (3.9%) Acceptance $|\eta|^{pi/K} < 1$ $p_{T}^{pi/K} > 0.2$ GeV, z>0.1, Correlation limit: $k_{T}' < 0.7P_{T}'$

With 100 fb⁻¹ statistics and P=70% polarization $\delta A_N = \frac{1}{P\sqrt{\sigma L}} = \frac{1}{P\sqrt{N}}$ $\delta A_{UT}^{\text{dihadron}} \approx 6.4\text{E-4}, \ \delta A_{UT}^{\text{K}^+\text{K}^-} \approx 3.8\text{E-3}, \ \delta A_{UT}^{\text{DDbar}} \approx 2.8\text{E-2}$ (Uncertainty divided into 10 bins in ϕ_{Sk})


Projections on the SSA with dijet probe


- Possible to do 2D binning in x_B and Q2
- Structures difficult to extract in 1D analysis observed
- Helpful to pin down the evolution feature of gluon Sivers

Comparison of all the probes

- Gluon Sivers effect is a luminosity hungry measurement.
- Vertical line represents the statistical uncertainty.
- Charged dihadron probe is the most statistically favored.
- D meson probe is mostly dominated by gluon dynamics.

