

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Recent Results from the MAJORANA DEMONSTRATOR

Tom Gilliss, for the MAJORANA Collaboration University of North Carolina Triangle Universities Nuclear Laboratory

Particles & Nuclei International Conference Beijing, China September 1, 2017

Neutrinoless Double-Beta Decay

- Neutrinoless double-beta decay (0vββ) postulated in nuclei susceptible to double-beta decay. Eg. ⁷⁶Ge, ⁸²Se, ¹³⁰Te, ¹³⁶Xe
- 0vββ requires violation of lepton number conservation

$$(A, Z - 2) \to (A, Z) + 2e^{-} + 2\nu_{e}$$

- Observation of 0vββ would imply
 - lepton number is not conserved
 - neutrinos have majorana mass
- Experimental signal is peak at 2vββ endpoint, with all transition energy in the emitted electrons

Discovery, Background, and Exposure

PANIC 2017

T. Gilliss

3

Pacific Northwest National Laboratory, Richland, Washington Isaac Arnquist, Eric Hoppe, Richard T. Kouzes

Ian Guinn, David Peterson, Walter Pettus, R. G. Hamish Robertson, Nick Rouf, Tim Van Wechel

T. Gilliss

The MAJORANA DEMONSTATOR

Operating underground at the 4850' level of the Sanford Underground Research Facility, with the best energy resolution (2.4 keV FWHM at 2039 keV) of any $\beta\beta$ -decay experiment.

- Goals: Demonstrate backgrounds low enough to justify building a tonne scale experiment.
 - Establish feasibility to construct & field modular arrays of Ge detectors.
 - Searches for additional physics beyond the standard model.
- Background Goal in the $0v\beta\beta$ peak region of interest (4 keV at 2039 keV)
 - 3 counts/ROI/t/y (after analysis cuts) Assay U.L. Currently \leq 3.5
- 44.1-kg of Ge detectors
 - 29.7 kg of 88% enriched ⁷⁶Ge crystals
 - 14.4 kg of ^{nat}Ge
 - · Detector Technology: P-type, point-contact.
- 2 independent cryostats
 - ultra-clean, electroformed Cu
 - 22 kg of detectors per cryostat
 - naturally scalable
- Compact Shield
 - low-background passive Cu and Pb shield with active muon veto

N. Abgrall et. al., Adv. High Ener. Phys. 2014, 365432 (2013) arXiv:1308.1633

Funded by DOE Office of Nuclear Physics, NSF Particle Astrophysics, NSF Nuclear Physics with additional contributions from international collaborators.

T. Gilliss

DEMONSTRATOR Backgrounds

a many

Based on assay results and scaled according to efficiencies determined by Geant4 Monte Carlo simulations. When upper limit, use upper limit as contribution.

Background Rate (c/ROI-t-y)

N. Abgrall et. al., Nucl. Instrum. Meth. A, Volume 828, 22-36 (2016)

Electroformed Cu and Enriched Ge

T. Gilliss

Electroformed Cu and Enriched Ge

N. Abgrall et. al., Nucl. Instrum. Meth. A, Volume 779, 52-62 (2015)

T. Gilliss

Electroformed Cu and Enriched Ge

DEMONSTRATOR Implementation

Module 1

16.9 kg (20) ^{enr}Ge 5.6 kg (9) ^{nat}Ge

In-shield running 5/2015 - 10/2015 Out-of-shield Improvements In-shield running 1/2016 - present

Module 2

12.9 kg (15) ^{enr}Ge 8.8 kg (14) ^{nat}Ge

In-shield running 7/2016 - present

Data Sets and Duty Cycles

- Currently taking blind data in DS6 with multi-sampling
- Exposure to-date of > 20 kg-yr
- 0vββ analysis underway on ~10 kg-yr of exposure

Energy Calibration

Acceptance (%)

Alpha Backgrounds

- Energy degraded alpha background observed in early data sets
- Charge from these events drifts along the surface rather than through the bulk
- Results in a distinctive delayed charge recovery (DCR) signal which is used to efficiently cut alpha events based on the slope past the rising edge
- Measurements taken and being analyzed from a DEMONSTRATOR detector in the TUBE alpha scanner at Technical University of Munich to better understand the source and response of surface alphas

Slow drift of charges along

Background in DS3 and DS4

The second

- 1.39 kg-yr exposure of enriched detectors
- One count after cuts in a 400 keV region around the Q-value of 2039 keV
- Projected background in 2.8 keV wide ROI of 5.1^{+8.9}-3.2 c/(ROI-t-y)
- Background index of 1.8x10⁻³ c/(keV-kg-y)

Background in DS3 and DS4

- 1.39 kg-yr exposure of enriched detectors
- One count after cuts in a 400 keV region around the Q-value of 2039 keV
- Projected background in 2.8 keV wide ROI of 5.1^{+8.9}-3.2 c/(ROI-t-y)
- Background index of 1.8x10⁻³ c/(keV-kg-y)

Low-Energy Physics Searches

- Limited exposure of enriched material to cosmic rays
- For the DEMONSTRATOR, the enriched detector ⁶⁸Ge rate is low enough that an X-ray delayed coincidence cut is not necessary
- Tritium is obvious and dominates in natural detectors below 18.6 keV endpoint
- Hardware thresholds below 1 keV, analysis below 5 keV is ongoing
- Shown below: DS0 commissioning background (without full electroformed Cu shield)
- Factor of several reduction in low-energy background in later datasets

Low-Energy Searches for Physics Beyond SM

- Pseudoscalar dark matter
- Vector dark matter
- 14.4 keV solar axion
- $e^{-} \rightarrow 3v$
- Pauli Exclusion Principle violation

N. Abgrall et. al., Phys. Rev. Lett. 118, 161801 (2017)

Low-Energy Physics Searches

- Limited exposure of enriched material to cosmic rays
- For the DEMONSTRATOR, the enriched detector ⁶⁸Ge rate is low enough that an X-ray delayed coincidence cut is not necessary
- Tritium is obvious and dominates in natural detectors below 18.6 keV endpoint
- Hardware thresholds below 1 keV, analysis below 5 keV is ongoing •
- Shown below: DS0 commissioning background (without full electroformed Cu shield) •
- Factor of several reduction in low-energy background in later data sets

Pseudoscalar ALP Coupling

MAJORANA and GERDA

How we want

To reach the ton-scale (and the necessary backgrounds), LEGEND will combine the strengths of both GERDA and the MAJORANA DEMONSTRATOR

MAJORANA:

- Radiopurity of nearby parts (FETs, cables, Cu mounts, etc.)
- Low noise electronics yields better PSD
- Low energy threshold (cosmogenic and low-E background)

GERDA:

• LAr active veto

- See parallel talk in "Neutrino Physics" Session, Room 301A, 14:20
- Low-A shield, no Pb

Both:

- Clean fabrication techniques
- Control of surface exposure
- Development of large point-contact detectors

Summary

- The ⁷⁶Ge enriched PPC detectors developed by MAJORANA
 - have attained the best energy resolution (2.4 keV FWHM at 2039 keV) of any $\beta\beta$ -decay experiment.
 - provide excellent pulse shape discrimination for reduction of backgrounds.
 - have sub-keV thresholds and excellent energy resolution at low-energy allowing the DEMONSTRATOR to perform sensitive tests in this region for physics beyond the standard model.
- The DEMONSTRATOR's initial backgrounds in the ROI are among the lowest achieved to date (approaching GERDA's recent best value) by development and selection of ultralow activity materials and low-mass designs.
- Combining the strengths of GERDA and MAJORANA, the LEGEND collaboration is moving forward towards a ton-scale ⁷⁶Ge based experiment. Based on the successes to date, LEGEND will be able to meet the backgrounds (~0.1 c/(ROI-t-y)) and energy resolution necessary for discovery-level sensitivities in the inverted ordering region.

The MAJORANA Collaboration

