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Neutrinoless Double-Beta Decay
● Neutrinoless double-beta decay (0νββ) postulated in nuclei susceptible to double-beta 

decay. Eg. 76Ge, 82Se, 130Te, 136Xe 

● 0νββ requires violation of lepton number conservation
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● Observation of 0νββ would imply 
● lepton number is not conserved 
● neutrinos have majorana mass 

● Experimental signal is peak at 2νββ endpoint, with all transition energy in the emitted 
electrons
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Discovery, Background, and Exposure
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for a background free experiment
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The MAJORANA DEMONSTATOR

● Background Goal in the 0νββ peak region of interest (4 keV at 2039 keV) 
● 3 counts/ROI/t/y (after analysis cuts)  Assay U.L. Currently ≤ 3.5 

● 44.1-kg of Ge detectors 
● 29.7 kg of 88% enriched 76Ge crystals 
● 14.4 kg of natGe 
● Detector Technology: P-type, point-contact. 

● 2 independent cryostats 
● ultra-clean, electroformed Cu 
● 22 kg of detectors per cryostat 
● naturally scalable 

● Compact Shield 
● low-background passive Cu and Pb 

shield with active muon veto

Funded by DOE Office of Nuclear Physics, NSF Particle 
Astrophysics, NSF Nuclear Physics with additional contributions 
from international collaborators.

● Demonstrate backgrounds low enough to justify building a tonne scale experiment. 
● Establish feasibility to construct & field modular arrays of Ge detectors. 
● Searches for additional physics beyond the standard model.

Goals:

Operating underground at the 4850’ level of the Sanford Underground Research Facility, 
with the best energy resolution (2.4 keV FWHM at 2039 keV) of any ββ-decay experiment.
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N. Abgrall et. al., Adv. High Ener. Phys. 2014, 365432 (2013) 
arXiv:1308.1633
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 DEMONSTRATOR Backgrounds
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N. Abgrall et. al., Nucl. Instrum. Meth. A, Volume 828, 22-36 (2016)

  

Figure 5: Background rate estimate for the Majorana Demonstrator based on assay results. When
assay results report upper limits, the upper limit is used as the contribution to the upper limit of <
3.5 c/ROI-t-y.

counts/kg/day, used in Table 5.
From Table 4 one finds that applying only data cleaning cuts, both modules individually miss the

CD4 ROI goal of < 7 counts/kg/month with a combined rate of 8 counts/kg/month. However, when the
DCR cut is applied to account for the alpha backgrounds the value of 1.3 counts/kg/month exceeds the
KPP baseline specification. As discussed at the 2016 MJD Annual Review, the possibility of events from
passivated surface alphas in the CD4 ROI was not included in defining this CD4 goal. More importantly,
as we will show in the next section, the projected background for the 0⌫�� region-of-interest (ROI) after
all cuts are applied is very encouraging, already approaching our original UPP goal.

4 Estimate of Backgrounds in the ��-decay region of interest

To estimate the background in the 0⌫�� region-of-interest (ROI) for the enriched detectors we measure
the backgrounds in a 400-keV wide window centered around the 0⌫�� ROI and then scale by the size of
the energy windows.

The energy spectra for datasets DS3, and DS4 before and after pulse shape discrimination (PSD) cuts
are applied are shown in Figure 7. The energy spectra for datasets DS1, DS3, and DS4 after all PSD cuts
have been applied are shown in Figure 8. The energy spectrum for combined data from Modules 1 and 2
after all PSD cuts have been applied is shown in Figure 9.

In Table 5, we present the preliminary analysis of results for the 400 keV region of interest that is used
to estimate the expected backgrounds. The resolution at the 0⌫�� 76Ge endpoint energy of 2039 keV was
determined for the combined enriched detectors in Module 1 to be 2.380 ± 0.006 keV and 2.256 ± 0.007

9

Based on assay results and scaled according to efficiencies determined by Geant4 
Monte Carlo simulations. When upper limit, use upper limit as contribution.

6



Electroformed Cu and Enriched Ge

● Electroformed underground 
● Average Th decay chain ≤ 0.1 µBq/kg 
● Average U  decay chain ≤ 0.1 µBq/kg 
● ~1.1 tons used in the DEMONSTRATOR 

● String components 
● Cryostats/thermosyphon 
● Inner layers of shielding

Electroformed  
Copper 

PTFE

PFA + fine Cu  
coaxial cable
Front-End Elec.● AMTEK (ORTEC) fabricated enriched 

detectors 
● 35 enriched point contact detectors     

(29.7 kg), 88% 76Ge 
● 33 Canberra modified natural BEGe 

detectors (20 kg) 
● Tracked and minimized surface exposure 

of enriched material to determine 
cosmogenic activation

T. Gilliss PANIC 2017

N. Abgrall et. al., Nucl. Instrum. Meth. A, Volume 779, 52-62 (2015)
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Electroformed Cu and Enriched Ge
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DEMONSTRATOR Implementation
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Results from the MAJORANA DEMONSTRATOR

XVII Int. Workshop on Neutrino Telescopes 
March 15, 20179

MAJORANA DEMONSTRATOR Implementation

Module 1: 16.9 kg (20) enrGe 
 5.6 kg (9) natGe 

Module 2: 12.9 kg (14) enrGe 
 8.8 kg (15) natGe

In-shield Running 

05/2015 – 10/2015 
Module Improvements 
01/2016 – ongoing 

07/2016 – ongoing

Module 1

Module 2

16.9 kg (20) enrGe 
5.6 kg (9) natGe

12.9 kg (15) enrGe 
8.8 kg (14) natGe
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MAJORANA DEMONSTRATOR Implementation

Module 1: 16.9 kg (20) enrGe 
 5.6 kg (9) natGe 

Module 2: 12.9 kg (14) enrGe 
 8.8 kg (15) natGe

In-shield Running 

05/2015 – 10/2015 
Module Improvements 
01/2016 – ongoing 

07/2016 – ongoing

In-shield running 5/2015 - 10/2015 
Out-of-shield Improvements 
In-shield running 1/2016 - present 

In-shield running 7/2016 - present
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Data Sets and Duty Cycles
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M1 Commissioning, no 

inner shield

M1 

inner shield

M1 

Multi-sampling

Modules 1 and 2 

Together in-shield

Module 1 & 2 

Integrated DAQ

DS0 
Module1 

June 26, –  
Oct. 7, 2015

DS1 
Module 1 

Dec. 31, 2015 –  
May 24, 2016

DS2 
Module 1 
May 24 – 

July 14, 2016

DS3 
Module 1 
Aug. 25, –  

Sept. 27, 2016

DS4 
Module 2 
Aug. 25, –  

Sept. 27, 2016

DS5 
Module 1 & 2 

Oct. 13, 2016 – 
May 5, 2017

*

*

Physics

High radon

Disruptive 
Activities

Calibration

Down time

● Currently taking blind data in DS6 with multi-sampling 
● Exposure to-date of > 20 kg-yr 

● 0νββ analysis underway on ~10 kg-yr of exposure



Energy Calibration
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N. Abgrall et. al., Nucl. Instrum. Meth. A, 
Volume 872, 16-22 (2017)
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208Tl 
FEP

208Tl 
SEP

208Tl 
DEP



Multiple Site Event Rejection 
● ββ decays appear as single site in the Ge 

crystals (~1mm3 energy deposition) 
● Point-contact detectors have sufficient 

differences in drift times throughout the 
bulk to identify multiple site interactions 

● Tune current amplitude-to-energy 
relationship (AvsE) to accept 90% of single 
site double escape peak events from 208Tl 
in calibrations

Single Site Multiple Site
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Figure 5: avse PSA performance of the operating detectors in, DS5 and DS6. 208Tl DEP events are fixed to 90%
(black), the SEP events (blue) are mostly multi-site and reduced to 5% by the cut.
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208Tl DEP (single 
site events) fixed 
to 90% 

208Tl SEP (multiple 
site events) 
reduced to 6% 



Alpha Backgrounds
● Energy degraded alpha background observed in early data sets 
● Charge from these events drifts along the surface rather than through the bulk 
● Results in a distinctive delayed charge recovery (DCR) signal which is used to efficiently 

cut alpha events based on the slope past the rising edge 
● Measurements taken and being analyzed from a DEMONSTRATOR detector in the TUBE 

alpha scanner at Technical University of Munich to better understand the source and 
response of surface alphas
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Background in DS3 and DS4
● 1.39 kg-yr exposure of enriched detectors 
● One count after cuts in a 400 keV region around the Q-value of 2039 keV 
● Projected background in 2.8 keV wide ROI of 5.1+8.9

-3.2 c/(ROI-t-y) 
● Background index of 1.8x10-3 c/(keV-kg-y)

T. Gilliss PANIC 2017 15



Background in DS3 and DS4
● 1.39 kg-yr exposure of enriched detectors 
● One count after cuts in a 400 keV region around the Q-value of 2039 keV 
● Projected background in 2.8 keV wide ROI of 5.1+8.9

-3.2 c/(ROI-t-y) 
● Background index of 1.8x10-3 c/(keV-kg-y)

2νββ Q-value
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1.39 kg-yr
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Low-Energy Physics Searches
● Limited exposure of enriched material to cosmic rays 
● For the DEMONSTRATOR, the enriched detector 68Ge rate is low enough that an X-ray 

delayed coincidence cut is not necessary 
● Tritium is obvious and dominates in natural detectors below 18.6 keV endpoint 
● Hardware thresholds below 1 keV, analysis below 5 keV is ongoing 

● Shown below: DS0 commissioning background (without full electroformed Cu shield) 
● Factor of several reduction in low-energy background in later datasets 

● Pseudoscalar dark matter 
● Vector dark matter 
● 14.4 keV solar axion 
● e- → 3ν 
● Pauli Exclusion Principle 

violation

Low-Energy Searches for 
Physics Beyond SM 

T. Gilliss PANIC 2017

N. Abgrall et. al., Phys. Rev. Lett. 118, 
161801 (2017)

55Fe
65Zn

68Ge

0.5 kg-yr 
1.3 kg-yr

commissioning data 
(without full UGEFCu shield)
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Low-Energy Physics Searches

● Pseudoscalar dark matter 
● Vector dark matter 
● 14.4 keV solar axion 
● e- → 3ν 
● Pauli Exclusion Principle 

violation

Low-Energy Searches for 
Physics Beyond SM 

Pseudoscalar ALP Coupling 
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● Limited exposure of enriched material to cosmic rays 
● For the DEMONSTRATOR, the enriched detector 68Ge rate is low enough that an X-ray 

delayed coincidence cut is not necessary 
● Tritium is obvious and dominates in natural detectors below 18.6 keV endpoint 
● Hardware thresholds below 1 keV, analysis below 5 keV is ongoing 

● Shown below: DS0 commissioning background (without full electroformed Cu shield) 
● Factor of several reduction in low-energy background in later data sets 

N. Abgrall et. al., Phys. Rev. Lett. 118, 
161801 (2017)

18



MAJORANA and GERDA 

MAJORANA:  
• Radiopurity of nearby parts (FETs, cables, Cu mounts, etc.) 
• Low noise electronics yields better PSD 
• Low energy threshold (cosmogenic and low-E background)

GERDA: 
• LAr active veto 
• Low-A shield, no Pb

To reach the ton-scale (and the necessary backgrounds), LEGEND will combine the 
strengths of both GERDA and the MAJORANA DEMONSTRATOR

T. Gilliss PANIC 2017

See parallel talk in “Neutrino Physics” Session, 
Room 301A, 14:20

19

Both: 
• Clean fabrication techniques 
• Control of surface exposure 
• Development of large point-contact detectors



Summary
● The 76Ge enriched PPC detectors developed by MAJORANA 

● have attained the best energy resolution (2.4 keV FWHM at 2039 keV) of any          
ββ-decay experiment. 

● provide excellent pulse shape discrimination for reduction of backgrounds. 
● have sub-keV thresholds and excellent energy resolution at low-energy allowing the 

DEMONSTRATOR to perform sensitive tests in this region for physics beyond the 
standard model. 

● The DEMONSTRATOR's initial backgrounds in the ROI are among the lowest achieved to 
date (approaching GERDA's recent best value) by development and selection of ultra-
low activity materials and low-mass designs. 

● Combining the strengths of GERDA and MAJORANA, the LEGEND collaboration is 
moving forward towards a ton-scale 76Ge based experiment.  Based on the successes 
to date, LEGEND will be able to meet the backgrounds (~0.1 c/(ROI-t-y)) and energy 
resolution necessary for discovery-level sensitivities in the inverted ordering region.  
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The MAJORANA Collaboration
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