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K-pp quasi-bound state — interest to antikaonic nuclei

Theory
Prediction of the existence of deep and narrow K- pp bound state

1. Yamazaki and Y. Akaishi, Phys. Lett. B535 (2002) 70:
Ez =-48MeV, I =61 MeV

Many theoretical calculations, different models and inputs
(Faddeev, variational calculations, FCA):
Eg~ -14-80MeV, I ~40-110MeV
- agree only on the fact that the quasi-bound state in K- pp exists

Experiment

FINUDA collaboration: £, = -115 MeV, I = 67 MeV
M. Agnello et. al., Phys. Rev. Lett. 94 (2005) 212303

DISTO collaboration: E; = -103 MeV, I' = 118 MeV
1. Yamazaki et al. Phys. Rev. Lett. 104, (2010)



A series of Faddeev calculations with coupled KNN — zZZN channels
NVS, J Révai
*Three-body pole positions and widths of the quasi-bound states in

the K- pp and K- K- p systems were evaluated

[t was demonstrated that there 1s no quasi-bound state in the K- d system
(caused by the strong interaction)

*Near-threshold elastic K- d amplitudes were calculated (including the K- d sc.l)

*The three-body K- d amplitudes were used for an approximate calculation of
the /s level shift and width of (anti)kaonic deuterium

Antikaon-nucleon potentials used:
* Phenomenological KN — zx with one-pole A(1405) resonance

« phenomenological KN — 2 with two-pole A(1405) resonance
o chirally motivated KN — 72— 7A potentials

- reproducing SIDDHARTA data on kaonic hydrogen /s level shift and
width together with the scattering K- p data with the same level of accuracy




Three-body Faddeev equations in Alt-Grassberger-Sandhas form
_1 3
U,,(2)=(1-6,,)(G, )+ (-5, )T, (2) Gy (2) U y(2), @, =123

=l

U,z(z) - 3-body transition operators S+(ap)—>a+(5y)
G,(z) - free Green function
T,(z) -2-body T-marix

A separable potential leading to a separable 7T-marix

V,=Alg. &= T.(D)=]g.) 7.(2) (g.]
allows to write the three-body equations in the form

X, 5(2)=Z,5(2)+ Z Z,,(2)7,(2) X 4(2)

With X ,,(2) = (£, | Gy(2) U,s(2) Gy (D) €)s Zop(2)=(1-5,)(2. 1Go(2) | 2)



Four-body Alt-Grassberger-Sandhas equations
P. Grassberger, W. Sandhas, Nucl. Rev. B2 (1967) 181
Up(2)=(1-6,,)5,,G,' )T, (2)G, (2)+
+Z(1—5 JU? (2)Gy(2) T, (2)G(2)U7(z2)

U.;(z) - 4-body transition operators
U_,(z) - 3-body transition operators

G,(z) - free Green function

T,(z) -2-body I-marix

A separable potential - separable T-marix — four-body equations:
07@=(-2,)6.@) +X0-2.)T @6, 0" @),

with Uos(2)=(g, |Gy(2) U (2) Gy(2)| g,)

f;ﬂ(Z) <ga |G,(2)U, (Z) G,(2)| gﬂ>
and (G,),,(2) =0,47,(2)




Four-body AGS equations for separable potentials
A.Casel, H. Haberzettl, W. Sandhas, Phys. Rev. C25 (1982) 1738

U”(2)=(1-6,) (G_O(z))_l +>(1-8,)T (2)G,(2)U” (2)

look similar to the three-body AGS equations in the general form.
Separable form of the “effective potentials” — separable “T”’-matrix:

() =|e; ) @) ()

allows to write the four-body equations in the form
X (2)=2"(2)+YZ" @)1t @)X (2)
with X7 (z) = <§“ 1G,U”(2)G, §p>,

27)=(1-5,)(g" 16,1}



4-body equations for the K NNN system

X1= LT Xo+Z1313X3

X2 =Zz1+Zzﬂ'1X1+ZzzT2X2 +7Z2373X3

}3 =/s+ a1 X1+ 23n12X2

Two types of partitions: 3+1 and 2+2: N + (I?NN )>

Initial channel ‘E +(NNN )> 1s fixed

The channels:
channel 1 : E+(N1N2N3 )>
channel2, :| N, + (KN,N, )> 2,:|N, + (KN,N, )> 2,:| Ny + (KN, )>
channel 3, : (I?Nl)+ (N2N3 )>,32 ; (EN2)+ (N3N1 )>,33 :|(EN3)+ (NlN2 )>
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Separabelization of potentials - Hilbert-Schmidt expansion

Lippmann-Schwinger equation:

OOV , HT n, ';Z N |
T(p,p's2)=V(p,p)+4x| (p-p ),,2(59 PEZ) e g
0 z—p (2,&)

Separable potential leads to the separable T-matrix

V(0.0 ==X 48, (D)2, (P) = T(pps2)=-Y g, (g, ()

were the eigenvalues 4 and eigenfunctions g,(p) are found from

1 OOV , " " 5 5
gn(p):—él'ﬂ-‘.‘ (p p"z)gn(p )p 2dp
A, v z=p" /2

47;; g,(p'"g,(P") o .

with normalization condition — p'ap"=-0,,
D z-p" )



Separabelization of “potentials” - Hilbert-Schmidt expansion

Three-body AGS equations:

X,5(p,052)=Z,5(p. D" Z)+Z4ﬂjZa7(p p'"2)T, (P 2)X 4(p", psz)p'” dp"

=1

Separable “potential” leads to the separable “7T-matrix”

Z,(pp'" z)——zz 2,.(0)2,(P) = X.p(p.p" z)——ilﬂ"ﬂ 2,.(0)2,,(p)

were the eigenvalues A, and eigenfunctions g, (p) are found from

2, (P)=— Z4ﬂjZa7(p, 527, (p'"32)g,, (P, p's2)p" dp

n7/1

with normalization condition

3
2472-.[gm/(p,pn;Z)T]/(pu;z)gn']/(pu,pv;Z)pn2 dpuz_évnn'
7=l 0



Z functions: momentum, 1sospin and spin parts

— B .
Zaﬂ —Zaﬂ(p)p ,Z) [Zaﬂ,lal/; SZO!,BaSaS,B

Quantum numbers

K_ppn : ](4) — O, S(4) — ]/2, orbital momentum L(4) =

Three nucleons - antisymmetrization

_ 3 - 3 -
Xl = Z Zl2n2 TznZ X2n2 + Z Zl3n3 T3n3 X3n3
n2=1 n3=lI
_ _ _ — 3 _ 3 -
X2n2‘ = Z21 + ZznZ'ITl Xl + Z Z2n2‘2n2 Tznz X2n2 + Z Zzn2'3n3 T3n3 X3n3
n2=1 n3=I
_ _ _ - 3 _
X3n3‘ = Z3n3‘1 + Z3n3‘1 T] Xl + Z Z3n3'2n2 T2n2 X2n2
n2=1

where n2, n3 — indices of the particular nucleons



KN interaction with coupled 72 and 7 Achannels

Potentials were fitted to the experimental data
e |5 level shift and width of kaonic hydrogen (by SIDDHARTA)
APP =-283+36+6eV, I.)°°=541£89+22eV
e Cross-sectionsof K" p — K™ p and K~ p — MB reactions
e Threshold branching ratios y, R_ and R,
o A(1405) with one - or two - pole structure

M 1505, = 1405.10 MeV, Ty =50.5£2.0 MeV

The “exact optical” versions of the:

 Phenomenological KN — 7% with one-pole A(1405) resonance
« phenomenological KN — 72 with two-pole A(1405) resonance
 chirally motivated KN —7X — 7A potentials

constructed and used for the three-body calculations

Two-term NN potential
reproduces: Argonne V18 NN phase shifts (with sign change)




Solution of the four-body equations:

_ _ 3 _
Xe=Zap+) ZayT, Xy, a=123; f=1

y=l1

Calculate separable 3-body “T-matrices”: evaluate eigenvalues and
eigenfunctions for the K NN and NNN subsystems

Evaluate momentum, isospin and spin parts of the 4-body “potentials” Z
Solve the homogeneus system of 4-body equations in the complex plane



Solution of the four-body equations:

_ _ 3 _
Xe=Zap+) ZayT, Xy, a=123; f=1

y=l1

Calculate separable 3-body “T-matrices”: evaluate eigenvalues and
eigenfunctions for the K NN and NNN subsystems

Evaluate momentum, isospin and spin parts of the 4-body “potentials” Z
Solve the homogeneus system of 4-body equations in the complex plane

Results will be soon




