Hadron spectroscopy: Lattice QCD

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

PANIC 2017, Beijing, 1 – 5 September 2017

Lattice QCD Spectroscopy

Systematically-improvable first-principles calculations

Discretise spacetime in a finite volume
Compute correlation fns. numerically (Euclidean time, t → i t)

Note:

- Finite *a* and *L*
- Possibly heavy u, d quarks

(\rightarrow unphysical m_{π})

Finite-volume energy eigenstates from: $C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$

Lower-lying mesons and baryons

Lower-lying mesons and baryons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering in Lattice QCD

Infinite volume – contin. spectrum above thresh.

Scattering in Lattice QCD

Finite volume – discrete spectrum

Infinite volume – contin. spectrum above thresh.

E_{cm} 2*m* Re

Non-interacting: $\vec{k}_{A,B} = \frac{2\pi}{L}(n_x, n_y, n_z)$

Interacting:

$$\vec{k}_{A,B} \neq \frac{2\pi}{L}(n_x, n_y, n_z)$$

Im

[periodic b.c.s]

Scattering in Lattice QCD Im $E_{\rm cm}$ Infinite volume – contin. spectrum above thresh. Re 2mFinite volume – discrete spectrum Non-interacting: $\vec{k}_{A,B} = \frac{2\pi}{I}(n_x, n_y, n_z)$ Interacting: $\vec{k}_{A,B} \neq \frac{2\pi}{I}(n_x, n_y, n_z)$ $\mathbf{t}(E_{\rm Cm}) = \begin{pmatrix} t_{\pi\pi\to\pi\pi}(E_{\rm Cm}) & t_{\pi\pi\to K\bar{K}}(E_{\rm Cm}) \\ t_{K\bar{K}\to\pi\pi}(E_{\rm Cm}) & t_{K\bar{K}\to K\bar{K}}(E_{\rm Cm}) \end{pmatrix}$

Lüscher method (and extensions): relate finite-volume energy levels to infinite-volume scattering t-matrix.

Elastic scattering: 1-to-1 correspondence (ignoring partial-wave mixing). But **in general under-constrained problem** (determinant equ. at each E_{cm}) \rightarrow parameterize E_{cm} dependence of *t*-matrix and fit $\{E_{lat}\}$ to $\{E_{param}\}$ Consider many different parameterizations (e.g. *K*-matrix, eff. range, B.W.)

Scattering in Lattice QCDImport F_{cm}Infinite volume – contin. spectrum above thresh.Import F_{cm}Finite volume – discrete spectrum2mReImport F_{cm}Non-interacting: $\vec{k}_{A,B} = \frac{2\pi}{L}(n_x, n_y, n_z)$ Interacting: $\vec{k}_{A,B} \neq \frac{2\pi}{L}(n_x, n_y, n_z)$

$$\mathbf{t}(E_{\mathsf{Cm}}) = \begin{pmatrix} t_{\pi\pi\to\pi\pi}(E_{\mathsf{Cm}}) & t_{\pi\pi\to K\bar{K}}(E_{\mathsf{Cm}}) \\ t_{K\bar{K}\to\pi\pi}(E_{\mathsf{Cm}}) & t_{K\bar{K}\to K\bar{K}}(E_{\mathsf{Cm}}) \end{pmatrix}$$

Lüscher method (and extensions): relate finite-volume energy levels to infinite-volume scattering *t*-matrix.

Elas Currently limited to hadron-hadron scattering – progress being But made on formalism for channels with > 2 hadrons.
 Con Recent review in Briceño, Dudek, Young [arXiv:1706.06223]

m

V.)

The ρ resonance: elastic $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: elastic $\pi\pi$ scattering

 m_{π} = 236 MeV $\delta/^{\circ}_{180}$ <u></u> ፼ ਯ ⊢ – <u>F</u> 150 22 energy levels нрн (1 volume) Ð 120 -62 ¢ 90 $\vec{P} = [000]$ ल $\vec{P} = [001]$ $\vec{P} = [011]$ 호 60 ¢ $\vec{P} = [111]$ $\vec{P} = [002]$ 30 ĿЪ ЮЧ $E_{\rm cm}/{\rm MeV}$ <u>-</u> म्ट 500 600 800 900 700 1000

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

 $(J^{PC} = 1^{--}, | = 1)$

The ρ resonance: elastic $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: **coupled-channel** $\pi\pi$, $K\bar{K}$

Wilson et al (HadSpec) [PR D92, 094502 (2015)]

The ρ resonance: elastic $\pi\pi$ scattering: other calcs.

Some other recent lattice QCD calculations:

- Bali *et al* (RQCD) [PR D93, 054509 (2016)]: $m_{\pi} \approx 150$ MeV ($N_f = 2$)
- Bulava *et al* [NP B910, 842 (2016)]: $m_{\pi} \approx 240$ MeV
- Guo et al [PR D94, 034501 (2016)]: m_{π} = 315, 226 MeV (N_f = 2)
- Fu & Wang [PR D94, 034505 (2016)]: $m_{\pi} = 176 346 \text{ MeV}$
- Alexandrou *et al* [arXiv:1704.05439]: m_{π} = 317 MeV
- Also chiral extrapolations/analyses including lattice data:
 - Bolton, Briceño, Wilson [PL B757, 50 (2016)]
 - Hu et al [PRL 117, 122001 (2016)]
 - Hu et al [PR D96, 034520 (2017)]

The ρ resonance: **elastic** $\pi\pi$ scattering: other calcs.

Resonant $\pi^+ \gamma \rightarrow \rho \rightarrow \pi^+ \pi^0$ amplitude

Need: $C_{ij}(t_f, t, t_i) = \langle 0 | O_i(t_f) \ \overline{\psi}(t) \gamma^{\mu} \psi(t) \ O_j(t_i) | 0 \rangle$

Briceño et al (HadSpec) [PRL 115, 242001 (2015); PRD 93, 114508 (2016)]

Light scalar mesons (< 1 GeV)

κ in πK, ηK

$J^{P} = 0^{+}$, Isospin = ½, Strangeness = 1

Wilson, Dudek, Edwards, CT (HadSpec) [PRL 113, 182001 (2014); PR D91, 054008 (2015)]

$J^{P} = 0^{+}$, Isospin = ½, Strangeness = 1

 $J^{P} = 0^{+}, I = 1$

12

$J^{P} = 0^{+}, I = 1$

$J^{P} = 0^{+}, I = 1$

σ, f_0 (980) in $\pi\pi$, $K\bar{K}$, ηη

$J^{P} = 0^{+}, I = 0$

Briceño, Dudek, Edwards, Wilson (HadSpec) [arXiv:1708.06667]

σ , f_0 (980) in $\pi\pi$, $K\bar{K}$, ηη

$J^{P} = 0^{+}, I = 0$

13

σ , f_0 (980) in $\pi\pi$, $K\bar{K}$, ηη

$J^{P} = 0^{+}, I = 0$

13

$f_0(500)/\sigma$ in elastic $\pi\pi$ scattering

$J^{P} = 0^{+}, I = 0$

Briceño, Dudek, Edwards, Wilson (HadSpec) [PRL 118, 022002 (2017)]

$f_0(500)/\sigma$ in elastic $\pi\pi$ scattering

$J^{P} = 0^{+}, I = 0$

C.f. unitarised χpt in Hanart, Pelaez, Rios [PRL 100, 152001 (2008)]

Briceño, Dudek, Edwards, Wilson (HadSpec) [PRL 118, 022002 (2017)]

c.f. light tensor mesons with m_{π} = 391 MeV

Charm-light (I= $\frac{1}{2}$): D π , D η , D_s \overline{K}

16

Charm-light (I= $\frac{1}{2}$): D π , D η , D_s \overline{K}

Moir, Peardon, Ryan, CT, Wilson (HadSpec) [JHEP 1610, 011 (2016)]

Charm-light (I= $\frac{1}{2}$): D π , D η , D_s \overline{K}

•

Moir, Peardon, Ryan, CT, Wilson (HadSpec) [JHEP 1610, 011 (2016)]

Charm-strange (I=0): DK (0⁺) and D*K (1⁺)

0 $m_{\pi} = 156$ MeV Lang et.al. $m_{\pi} = 290$ MeV $m_{\pi} = 150$ MeV $-\frac{1}{4}$ $-\frac{1}{2}$ O^+ $p \cot \delta \, [\mathrm{fm}^{-1}]$ $^{-1}$ -248 64 64 $32 \, 40$ 64 2464 244032 -200^{2} $-100^{20} \ 100^{2}$ 200^{2} 300^{2} 400^{2} -300^{2} $p^2 \, [\text{MeV}^2]$ m_{π} = 290 MeV (4 vols) m_{π} = 150 MeV (2 vols) 0 $m_{\pi} = 156$ MeV Lang et.al. $m_{\pi} = 290$ MeV $m_{\pi} = 150$ MeV $-\frac{1}{4}$ $-\frac{1}{2}$ $p \cot \delta \ [\text{fm}^{-1}]$ $^{-1}$ -2-48.6464 482432406432246440 -300^{2} -200^{2} $-100^{2}0\ 100^{2}$ 200^{2} 300^{2} No strange quarks in $p^2 \, [\text{MeV}^2]$ the sea $(N_f = 2)$

Bali et al (RQCD)

[arXiv:1706.01247]

Charm-strange (I=0): DK (0⁺) and D*K (1⁺)

Bali *et al* (RQCD) [arXiv:1706.01247]

Some recent work on charmonium(-like) mesons:

- Ozaki, Sasaki [PR D87, 014506 (2013)] no sign of Y(4140) in J/ $\psi \phi$
- Prelovsek & Leskovec [PRL 111, 192001 (2013)] 1⁺⁺ I=0 near $D\bar{D}^*$ X(3872)?
- Prelovsek et al [PL B727, 172; PR D91, 014504 (2015)] no sign of Z⁺(3900) in 1⁺⁻
- Chen *et al* (CLQCD) [PR D89, 094506 (2014)] 1⁺⁺ I=1 $D\bar{D}^*$ weakly repulsive
- Padmanath *et al* [PR D92, 034501 (2015)] 1⁺⁺ I=0 [X(3872)?]; no I=1 or Y(4140)
- Lang *et al* [JHEP 1509, 089 (2015)] I=0 $D\bar{D}$: 1⁻⁻ ψ (3770) and 0⁺⁺
- Chen *et al* (CLQCD) [PR D92, 054507 (2015)] 1^{+-} I=1 $D^* \overline{D}^*$ weakly repulsive?
- Chen *et al* (CLQCD) [PR D93, 114501 (2016)] 0^{--} , 1^{+-} I= $1D^*\overline{D}_1$ some attraction?
- Ikeda *et al* (HAL QCD) [PRL 117, 242001 (2016); arXiv:1706.07300] π J/ ψ , ρ η_c , $D\bar{D}^*$ using HAL QCD method suggest Z⁺(3900) is a threshold cusp
- Albaladejo et al [EPJ C76, 573 (2016)] different scenarios for PR D91, 014504

Bottom mesons:

- Lang *et al* [PL B750, 17 (2015)] *BK* (0⁺) and *B***K* (1⁺) I=0 bound states
- Lang *et al* [PR D94, 074509 (2016)] $B_s \pi$, *BK* (I=1) J^P = 0⁺ no sign of *X*(5568)

Heavy-flavour tetraquarks:

- Bicudo *et al* [PR D92, 014507 (2015); PR D93, 034501 (2016); PR D95, 034502 (2017)] potential between static b antiquarks: *udbb* I=0 1⁺ tetraquark
- Francis *et al* [PRL 118, 142001 (2017)] $ud\overline{b}\overline{b}$ I=0 and $ls\overline{b}\overline{b}$ I=1/2 1⁺ tetraquarks
- (Peters et al [arXiv:1609.00181 PoS Lattice2016])

Roper (excited nucleon, $J^P = \frac{1}{2}^+$, P-wave N π relevant) – situation not yet clear in lattice QCD calculations. See e.g. Lang, Leskovec, Padmanath, Prelovsek [PR D95, 014510 (2017)], Wu *et al* [PR D95, 114507 (2017)] and references therein

Summary

- Significant progress in LQCD calculations of resonances, near-threshold states, etc – map out scattering amps.
- Some examples of recent work:
 - ρ resonance
 - Light scalars (κ, a₀(980), σ, f₀(980))
 - Heavy mesons
- Also transitions, e.g. ρ resonance $(\pi\pi) \rightarrow \pi \gamma$
- Tools to learn about structure (e.g. m_{π} dependence)
- Ongoing work on formalism (e.g. 3-hadron scattering)
- Connections with analysis of experimental data