# New Physics at the Energy Frontier

LianTao Wang U. Chicago

PANIC 2017. Sept. 2 Beijing



# News from Moriond 2017

#### 52nd Rencontres de Moriond EW 2017

présidé par Lydia Iconomidou-Fayard (LAL), Jean Marie Frere (ULB Brussels)

de samedi 18 mars 2017 à 08:30 à samedi 25 mars 2017 à 12:00 (Europe/Paris)



# From gravity to the Higgs we're still waiting for new physics

Annual physics jamboree Rencontres de Moriond has a history of revealing exciting results from colliders, and this year new theories and evidence abound



Guardian

# Road ahead:

# Immediate future: Large Hadron Collider



LHC schedule beyond LS1



#### - Much more to come: 99% of the data to come

# As data accumulates

Run I limit 2 TeV, e.g. pair of I TeV gluino.



Rapid gain initial 10s fb<sup>-1</sup>, slow improvements afterwards. Reaching the "slow" phase after Moriond 2017

# Beyond the LHC, future facilities



# Our expectation



# Our expectation



- Not too surprised that nothing has turned up yet.

- LHC may still bring surprises. Future colliders can probe 10s TeV regime.
- We don't know where new particles might be.





![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_1.jpeg)

# However, keep in mind:

- This is not a fishing expedition just to find new particles.
- Standard Model is not complete. Many open questions.
- The goal of particle physics is to answer these questions! We will keep trying.

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

Electroweak scale: Naturalness and beyond

![](_page_18_Figure_0.jpeg)

## Mysteries

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

Figure 8: Question of the nature of the electroweak phase transition.

A first-order phase transition is also strongly motivated by the possibility of electroweak baryogenesis [18]. While the origin of the baryon asymmetry is one of the most fascinating questions in physics, it is frustratingly straightforward to build models for baryogenesis at ultra-high energy scales, with no direct experimental consequences. However, we aren't forced to defer this physics to the deep ultraviolet: as is well known, the dynamics of electroweak symmetry breaking itself provides all the ingredients needed for baryogene-

![](_page_20_Figure_0.jpeg)

of electroweak baryogenesis [18]. While the origin of the baryon asymmetry is one of the most fascinating questions in physics, it is frustratingly straightforward to build models for baryogenesis at ultra-high energy scales, with no direct experimental consequences. However, we aren't forced to defer this physics to the deep ultraviolet: as is well known, the dynamics of electroweak symmetry breaking itself provides all the ingredients needed for baryogene-

### How to predict Higgs mass?

![](_page_21_Figure_1.jpeg)

The energy scale of new physics responsible for EWSB

What is this energy scale? M<sub>Planck</sub> = 10<sup>19</sup> GeV, ...?

If so, why is so different from 100 GeV? The so called naturalness problem

Electroweak scale, 100 GeV.

 $m_h$  ,  $m_VV$  ...

### Naturalness of electroweak symmetry breaking

• • • • • • •

The energy scale of new physics responsible for EWSB

TeV new physics. Naturalness motivated Many models, ideas.

Electroweak scale, 100 GeV.

 $m_h$ ,  $m_W$  ...

![](_page_23_Figure_0.jpeg)

Stop too heavy to be natural

Composite top partner too light, excluded

Such conclusions too simplistic, "work around" available. A bit uncomfortable, yes. Not time to give up just yet.

## Direct searches

![](_page_24_Figure_1.jpeg)

LHC will keep searching for such new particles

Future colliders, FCC-hh/SPPC, can continue the quest.

### Testing naturalness at 100 TeV pp collider

Cohen et. al., 2014

![](_page_25_Figure_2.jpeg)

Pappadopulo, Thamm, Torre, Wulzer, 2014

![](_page_25_Figure_4.jpeg)

Fine tuning:  $(M_{NP})^{-2}$ 

# Stealthy top partner. "twin"

Chacko, Goh, Harnik

Craig, Katz, Strassler, Sundrum

![](_page_26_Figure_3.jpeg)

- Top partner not colored. Higgs decay through hidden world and back.
- Lead to Higgs rare decays.

### More exotic ideas

![](_page_27_Picture_1.jpeg)

Low scale landscape

Higgs rare decay.

"fat" Higgs Higgs coupling

Can't hide from the Higgs.

Talk by Arkani-Hamed CEPC workshop Sept. 2016

# Bottom line on naturalness

- It is the most pressing question of EWSB.
  - How should we predict the Higgs mass?
- We have ideas, but maybe not the right one.
  - No confirmation of any of the proposed models.
  - Confusion is good for physics. Challenging the foundation of our understanding of Quantum Field Theory.
  - Need experimental guidance.
- Fortunately, with Higgs, we know where to look.
  - Clue to any possible way to address naturalness problem must show up in Higgs coupling measurement.

# LHC entering precision measurement stage

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

4-5% on Higgs coupling, reach TeV new physics

# Higgs coupling: a "no-lose"

- Any attempt to address the Higgs mass problem has to introduce something couples to the Higgs.
  - ▶ Will generally induce shifts in Higgs coupling.

![](_page_30_Figure_3.jpeg)

 $\kappa_Z = \frac{g_{hZ} \text{(Measured)}}{g_{hZ} \text{(SM)}}$ 

### Higgs factory has what it takes!

Thursday, January 22, 15

# Nature of EW phase transition

![](_page_31_Figure_1.jpeg)

What we know from LHC LHC upgrades won't go much further

"wiggles" in Higgs potential

Wednesday, August 13, 14 Big difference in triple Higgs coupling

# Probing nature of EW phase transition

![](_page_32_Figure_1.jpeg)

# Dark matter

### More specifically: WIMP DM

# Dark matter

![](_page_34_Figure_1.jpeg)

![](_page_34_Picture_2.jpeg)

It is there. Not a theorist's imagination.

Only seen its gravitational interaction. We have to understand them better. Collider search is a key approach.

![](_page_34_Picture_5.jpeg)

# WIMP miracle

![](_page_35_Figure_1.jpeg)

- Thermal equilibrium in the early universe.
- If  $g_D \sim 0.1~M_D \sim 10s~GeV$  TeV
  - ▶ We get the right relic abundance of dark matter.
- Major hint for weak scale new physics!

### Simplest WIMP: part of weak multiplet

![](_page_36_Figure_1.jpeg)

- Mediated by W/Z/h.

- Predictive, no unkown particle as mediator.
- The original WIMP proposal.

## WIMP mass

![](_page_37_Figure_1.jpeg)

- More precisely, to get the correct relic abundance

$$M_{\rm WIMP} \le 1.8 \,\,{\rm TeV} \,\,\left(\frac{g^2}{0.3}\right)$$

TeV-ish in simplest models

# "standard" story.

![](_page_38_Figure_1.jpeg)

# "standard" story.

![](_page_39_Figure_1.jpeg)

Of course, most WIMP parameter space not covered yet. Still plausible at the LHC, will keep looking.

# Focus more on basic channel

- pair production + additional radiation.

![](_page_40_Figure_2.jpeg)

- Mono-jet, mono-photon, mono-Higgs...
- Have become "Standard" LHC searches.

Beltran, Hooper, Kolb, Krusberg, Tait, 1002.4137 Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1005.1286 Bai, Fox, Harnik, 1005.3797

![](_page_41_Figure_0.jpeg)

- Very challenging. Systematics dominated
  - No limit from the 8 TeV run.
  - ▶ Very weak discovery reach at 14 TeV, 3 ab<sup>-1</sup>.
- Reach at lepton collider, about  $1/2 E_{CM}$ .

# At 100 TeV pp collider

![](_page_42_Figure_1.jpeg)

# Consider new interactions of DM

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_2.jpeg)

scalar or Z'

squark like

### MonoX vs direct search for mediator

![](_page_44_Figure_1.jpeg)

### Good coverage at the LHC.

For a "to-do-list", see dark matter forum publication: 1507.00966

# More dark-stuff searches

- Looking for dark sector. Very weakly coupled to the SM.
  - Connection with dark matter, neutrino, etc.
  - ▶ Many have not been searched for yet.
- Can come from Higgs portal, but could be more general.
- Displaced-Long lived, soft, kink, ...

![](_page_45_Figure_6.jpeg)

![](_page_46_Figure_0.jpeg)

# Looking towards the future.

- Uncertain for sure.
- But, we are not completely in the dark.
  - ▶ We have challenges. We have interesting questions
  - Electroweak symmetry breaking, dark matter, and much more.
- LHC and beyond, we will keep searching for answers.

![](_page_48_Picture_0.jpeg)

# A lot to look forward to!

# Higgs coupling vs direct search

![](_page_49_Figure_1.jpeg)

# Generic searches, pushing boundary

![](_page_50_Figure_1.jpeg)

#### A lot of models motivating these searches may look like solutions waiting for a problem.

But, we should cast a wide net for unexpected.

### Higgs rare decay at hadron collider

- The "ultimate" Higgs factories

![](_page_51_Figure_2.jpeg)

Hadron collider good for rare but clean signal

# Some possible channels

| /          | Decay Topologies                              | Decay mode $\mathcal{F}_i$                                                                                   | Decay Top                      | pologies          | Decay mode $\mathcal{F}_i$                                                                                 |
|------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------|------------------------------------------------------------------------------------------------------------|
| $-\langle$ | h  ightarrow 2                                | $h \rightarrow \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                   | h  ightarrow 2                 | $\rightarrow 4$   | $h \rightarrow (b\bar{b})(b\bar{b})$                                                                       |
|            | h  ightarrow 2  ightarrow 3                   | $h \to \gamma + \not\!\!\!E_{\mathrm{T}}$                                                                    | _                              |                   | $h  ightarrow (bar{b})(	au^+	au^-)$                                                                        |
|            |                                               | $h  ightarrow (bar{b}) + E_{ m T}$                                                                           |                                |                   | $h  ightarrow (bar{b})(\mu^+\mu^-)$                                                                        |
|            |                                               | $h  ightarrow (jj) + E_{ m T}$                                                                               | /                              | $\langle  $       | $h  ightarrow (	au^+ 	au^-) (	au^+ 	au^-)$                                                                 |
|            |                                               | $h ightarrow(	au^+	au^-)+ ot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$        | —                              |                   | $h  ightarrow (	au^+ 	au^-)(\mu^+ \mu^-)$                                                                  |
|            | $\mathbf{i}$                                  | $h  ightarrow (\gamma \gamma) +  ot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                                | $\langle  $       | $h \rightarrow (jj)(jj)$                                                                                   |
|            |                                               | $h  ightarrow (\ell^+ \ell^-) + E_{ m T}$                                                                    | _                              |                   | $h  ightarrow (jj)(\gamma\gamma)$                                                                          |
|            | $h \rightarrow 2 \rightarrow 3 \rightarrow 4$ | $h  ightarrow (bb) + E_{ m T}$                                                                               |                                |                   | $h  ightarrow (jj)(\mu^+\mu^-)$                                                                            |
|            | $\langle$                                     | $h \rightarrow (jj) + \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$            |                                |                   | $h  ightarrow (\ell^+ \ell^-) (\ell^+ \ell^-)$                                                             |
|            | $\langle \rangle$                             | $h  ightarrow (	au^+ 	au^-) + E_{ m T}$                                                                      |                                |                   | $h  ightarrow (\ell^+ \ell^-)(\mu^+ \mu^-)$                                                                |
|            |                                               | $h \rightarrow (\gamma \gamma) + \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                                |                   | $h ightarrow(\mu^+\mu^-)(\mu^+\mu^-)$                                                                      |
|            |                                               | $h \rightarrow (\ell^+ \ell^-) + \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                                |                   | $h  ightarrow (\gamma \gamma) (\gamma \gamma)$                                                             |
|            | $b \rightarrow 2 \rightarrow (1 \pm 2)$       | $n \rightarrow (\mu \cdot \mu) + \mu_{\rm T}$<br>$h \rightarrow b\bar{b} + F_{\rm T}$                        | $\langle$                      |                   | $h  ightarrow \gamma \gamma +  ot\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|            | $n \rightarrow 2 \rightarrow (1+3)$           | $h \rightarrow ii + E_{\rm T}$                                                                               | $h \rightarrow 2 \rightarrow$  | $4 \rightarrow 6$ | $(h  ightarrow (\ell^+ \ell^-)(\ell^+ \ell^-) + E$                                                         |
|            | $\leftarrow$                                  | $h \rightarrow \tau^+ \tau^- + E_{\rm T}$                                                                    |                                |                   | $h  ightarrow (\ell^+ \ell^-) + E_{ m T} + \lambda$                                                        |
|            |                                               | $h \rightarrow \gamma \gamma + E_T$                                                                          | $\checkmark$ $h \rightarrow 2$ | $\rightarrow 6$   | $h  ightarrow \ell^+ \ell^- \ell^+ \ell^- + E_{ m T}$                                                      |
|            |                                               | $h  ightarrow \ell^+ \ell^- + E_{ m T}$                                                                      |                                | $ \ge $           | $h \rightarrow \ell^+ \ell^- + \not\!\!\!E_{\mathrm{T}} + X$                                               |
|            |                                               |                                                                                                              |                                |                   |                                                                                                            |
|            |                                               |                                                                                                              |                                | $\leq$            |                                                                                                            |
|            |                                               |                                                                                                              |                                |                   |                                                                                                            |

adapted from slides of Zhen Liu

Good sensitivity from the LHC

# Examples

![](_page_53_Figure_1.jpeg)

- Final states can be di-boson, ttbar, etc.
- Can be closely related to electroweak symmetry breaking

# In addition to high energy colliders

- High intensity beams
- Observation of early universe
- Table top experiments
- ...
- Should think of even more possible probes.
- Here, I will focus on colliders and the questions they can directly address.

# New physics Higgs rare decays

![](_page_55_Figure_1.jpeg)

Curtin, Gori, Shelton

More examples. Such as possible connection with naturalness mentioned earlier

# Understanding the Higgs better

![](_page_56_Figure_1.jpeg)