MEASUREMENTS OF HADRON RESONANCE PRODUCTION WITH ALICE

PANIC 2017 BEIJING, 1/9/17

Istituto Nazionale di Fisica Nucleare

RESONANCES IN HEAVY-ION COLLISIONS

Quark-Gluon Plasma (QGP) is created in ultra-relativistic heavy-ion collisions [J. D. Bjorken, Phys. Rev. D 27 (1983) 140] After the collision, the QGP fireball expands and cools down Phase transition to hadron gas at a temperature $T_{critical}$ Chemical composition frozen at T_{chem} (and strangeness enhancement) Final-state interactions in the late hadron gas phase Kinetic freeze-out at T_{kin} once elastic collisions stop

Precise measurements of resonances allow one to study several aspects of the medium formed in the collisions.

In this presentation, focus on:

time

- Strangeness enhancement in QGP
- Late hadron gas phase

see also talk by D. Colella

HADRONIC RESONANCES IN ALICE

Several hadronic resonances studied with ALICE:

Run I results (2010-2013):

- pp at $\sqrt{s} = 7$ TeV (MB and vs multiplicity)
- □ pp at $\sqrt{s} = 0.9, 2.76, 5.02, 8$ TeV
- p-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
- Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV

Run II results (2015-):

- pp at $\sqrt{s} = 5$ (MB)
- pp at $\sqrt{s} = 13$ TeV (MB and vs multiplicity)
- Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

 $\begin{array}{l} \mbox{Lifetime (fm/c)} \\ \rho^0 < \ K^{*0} < \ \Sigma^{*\pm} < \ \Lambda^* \ < \ \Xi^{*0} < \ \varphi \\ \mbox{1.3} \ < \ \mbox{4.2} < \mbox{5.5} < \mbox{12.6} < \mbox{21.7} < \mbox{46.2} \end{array}$

Phys. Rev. C 95 (2017) 064606 Eur. Phys. J. C 77 (2017) 389 Eur. Phys. J. C 76 (2016) 245 Phys. Rev. C 91 (2015) 024609 Eur. Phys. J. C 75 (2015) 1 Eur. Phys. J. C 72 (2012) 2183 Eur. Phys. J. C 71 (2011) 1594

New preliminary results

THE ALICE EXPERIMENT

MULTIPLICITY AND CENTRALITY

Phys. Rev. Lett. 116 (2016) 222302

- V0 scintillators at 2.8 < η < 5.1 (V0A) and -3.7 < η < -1.7 (V0C).
 V0M is defined as V0A&V0C
- Event activity is measured at forward rapidity with the V0 detector
- Centrality classes (Pb-Pb) defined as percentiles of the VOM signal distribution and related to observables via Glauber model
- **Multiplicity** ($\langle dN_{ch}/d\eta \rangle$) is defined as the number of primary charged particles per event (measured in $|\eta| < 0.5$)

MULTIPLICITY DEPENDENCE OF PARTICLE RATIOS

- Smooth evolution of K/ π and p/ π ratios across different systems
- High multiplicity pp at 7 TeV and peripheral Pb-Pb at 2.76 and 5.02 TeV are consistent

ENERGY DEPENDENCE OF PARTICLE RATIOS

Saturation trend for $\sqrt{s} \gtrsim 1$ TeV

STRANGENESS ENHANCEMENT

ENHANCED STRANGENESS PRODUCTION

- **Clear increase of strangeness** production from pp to Pb-Pb
- Strangeness enhancement was one of the first signatures proposed for QGP formation [J. Rafelski and B. Müller, Phys. Rev. Lett. 48, 16 (1982) 1066 [Erratum: Phys. Rev. Lett. 56 (1986) 2334]]
- First observation of **enhanced** production of strange particles in high-multiplicity pp collisions
- Increase is not mass-related but strangeness-related

STRANGE RESONANCE PRODUCTION

Ratio of resonance to stable particle with same strangeness content is flat irrespective of mass

STRANGE RESONANCE PRODUCTION

Ratio of resonance to stable particle with same strangeness content is flat irrespective of mass

STRANGE RESONANCE PRODUCTION

 ϕ has strangeness S=0 but a behaviour between K and Ξ

LATE HADRONIC PHASE

Re-scattering (elastic or pseudo-elastic scattering of the decay products) and regeneration modify the yields of reconstructible resonances

G. Torrieri and J. Rafelski, Phys. Lett. B509 (2001) 239-245 S. Vogel and M. Bleicher, Proc. of the XLIII Nucl. Phys. Winter Meeting in Bormio (2005)

RESONANCE-TO-STABLE-PARTICLE RATIO

 $\begin{array}{c|c} \mbox{Lifetime (fm/c)} & \\ \rho^0 \ < \ K^{*0} \ < \ \Sigma^{*\pm} \ < \ \Lambda^* \ < \ \Xi^{*0} \ < \ \varphi \\ 1.3 \ < \ 4.2 \ < \ 5.5 \ < \ 12.6 \ < \ 21.7 \ < \ 46.2 \end{array}$

ϕ/K shows no suppression

- almost constant behaviour
- re-scattering is **not significant for φ**

RESONANCE-TO-STABLE-PARTICLE RATIO

K*/K shows clear suppression

- going from pp, p-Pb and peripheral
 Pb-Pb collisions to central Pb-Pb
- New results in Pb-Pb at 5 TeV confirmed the trend observed in Pb-Pb at 2.76 TeV

Most favoured explanation of K* suppression is dominance of **rescattering over regeneration**

RE-SCATTERING IN SMALL SYSTEMS?

Hints of a similar behavior (flat for ϕ/K and decreasing for K*/K) as in Pb-Pb collision (but uncertainties are large!)

SHORTER-LIVED RESONANCES

		Lifetime (fm/c)
	ρ0 <	$< \mathrm{K}^{*0} < \Sigma^{*\pm} < \Lambda^{*} < \Xi^{*0} < \phi$
	1.3	< 4.2 < 5.5 < 12.6 < 21.7 < 46.2
1		

ρ/π shows clear suppression going from pp and peripheral Pb-Pb collisions to central Pb-Pb

EPOS3 with UrQMD qualitatively reproduces the trend of the suppression

- UrQMD added as afterburner to model re-scattering effects
- fails to reproduce the trend without UrQMD

RESONANCE-TO-STABLE-PARTICLE RATIO

Suppression of Λ(1520) in most central Pb-Pb (0-20%) wrt. pp, p-Pb, peripheral Au-Au, Pb-Pb and thermal models

 follows STAR trend with higher multiplicity and better accuracy

EPOS3 with UrQMD qualitatively reproduces the trend of the suppression

LONGER-LIVED RESONANCES

 $\begin{array}{c|c} \mbox{Lifetime (fm/c)} \\ \rho^0 < K^{*0} < \Sigma^{*\pm} < \Lambda^* < \Xi^{*0} < \phi \\ 1.3 < 4.2 < 5.5 < 12.6 < 21.7 < 46.2 \end{array}$

Almost constant behaviour

- no significant multiplicity dependence in pp and p-Pb collisions
- hint of suppression in central Pb-Pb w.r.t pp and p-Pb, but systematics to be improved in peripheral Pb-Pb

EPOS3 with UrQMD

 no strong suppression expected from the model

CONCLUSIONS

- Thanks to a campaign of precise measurements, hadronic resonances have become suitable tools in the study of bulk production in ultra-relativistic heavy-ion collisions and in the investigation of new effects in small systems
- Strangeness enhancement as signature of the QGP has been studied with resonances of different mass and strangeness content. In small systems strangeness enhancement as a function of multiplicity is found to be driven by strangeness content and not by mass
- Hadronic resonances are valuable probes of the hadronic medium in the late stage of ultra-relativistic heavy-ion collisions. Further results will give us a better understanding on final-state effects and will allow to quantify the duration of the late phase

Thank you for your attention!

BACKUP SLIDES

ENERGY DEPENDENCE OF MULTIPLICITY

- Much stronger s dependence for A-A than for pp collisions
- ALICE p-Pb and PHOBOS d-Au on the curve for pp collisions

ENERGY DEPENDENCE OF MULTIPLICITY

- Data for 2.76 TeV scaled according to s dependence
- Strong dependence observed as a function of N_{part}

Phys. Rev. Lett. 116 (2016) 222302

MULTIPLICITY DEPENDENCE OF PARTICLE YIELDS

In small systems the event multiplicity drives particle production