

Measurement of Neutral Mesons and Direct Photons with ALICE at the LHC

Daniel Mühlheim on behalf of the ALICE Collaboration

Westfälische Wilhelms-Universität Münster

PANIC, Beijing September 03rd, 2017

Content

- \succ Physics motivation (\rightarrow Why neutral mesons and direct photons?)
- ➢ ALICE @ the LHC
- Photon reconstruction (PCM, EMCal, PHOS)
- Published neutral meson measurements by ALICE up to now
 - pp (QCD vacuum)
 - p-Pb (cold nuclear effects)
 - Pb-Pb (QGP creation \rightarrow QCD medium effects)
- Direct photon measurements by ALICE
 - Pb-Pb (hot QCD medium \rightarrow thermal photons)
- Summary & outlook

- List of observables:
 - Direct Photons:
 - Photon yields, R_{AA}, R_{pPb}

$$\bullet \quad R_{\gamma} = \frac{\gamma^{\text{incl}}}{\gamma^{\text{decay}}}$$

 ✓ Photons escape the QCD medium basically unaffected, produced at every stage of the collision
 → very interesting probe

- List of observables:
 - Direct Photons:
 - Photon yields, R_{AA}, R_{pPb}

•
$$R_{\gamma} = \frac{\gamma^{\text{incl}}}{\gamma^{\text{decay}}}$$

- ✓ Photons escape the QCD medium basically unaffected, produced at every stage of the collision
 → very interesting probe
- Neutral mesons: $\pi^0(\eta) \rightarrow \gamma \gamma$
 - Spectra (invariant yields / production cross sections)
 - Particle ratios
 - Integrated yields / mean p_{T}
 - ✓ Important input for direct photons, dielectrons, HF electrons \rightarrow dominant background
 - ✓ Neutral meson spectra are measured over wide p_T ranges, no other identified particle spectra are available with comparable momentum reach
 Important input for fragmentation function fits
 - \rightarrow important input for fragmentation function fits

- List of observables:
 - Direct Photons:
 - Photon yields, R_{AA}, R_{pPb}

•
$$R_{\gamma} = \frac{\gamma^{\text{incl}}}{\gamma^{\text{decay}}}$$

- ✓ Photons escape the QCD medium basically unaffected, produced at every stage of the collision
 → very interesting probe
- Neutral mesons: $\pi^0(\eta) \rightarrow \gamma\gamma$
 - Spectra (invariant yields / production cross sections)
 - Particle ratios
 - Integrated yields / mean p_{T}
 - ✓ Important input for direct photons, dielectrons, HF electrons \rightarrow dominant background
 - ✓ Neutral meson spectra are measured over wide p_T ranges, no other identified particle spectra are available with comparable momentum reach
 → important input for fragmentation function fits
- pp / p-Pb / Pb-Pb measurements
 - Each system is unique, need all of them to develop full, consistent picture
 - Disentangle initial/final state effects in nuclear modification of spectra in Pb-Pb collisions

- List of observables:
 - Direct Photons:
 - Photon yields, R_{AA}, R_{pPb}

•
$$R_{\gamma} = \frac{\gamma^{\text{incl}}}{\gamma^{\text{decay}}}$$

- ✓ Photons escape the QCD medium basically unaffected, produced at every stage of the collision
 → very interesting probe
- Neutral mesons: $\pi^0(\eta) \rightarrow \gamma \gamma$
 - Spectra (invariant yields / production cross sections)
 - Particle ratios
 - Integrated yields / mean p_{T}
 - ✓ Important input for direct photons, dielectrons, HF electrons \rightarrow dominant background
 - ✓ Neutral meson spectra are measured over wide p_T ranges, no other identified particle spectra are available with comparable momentum reach
 → important input for fragmentation function fits
- pp / p-Pb / Pb-Pb measurements
 - Each system is unique, need all of them to develop full, consistent picture
 - Disentangle initial/final state effects in nuclear modification of spectra in Pb-Pb collisions
- Different collision energies
 - Test pQCD NLO / generator (PYTHIA,...) predictions
 - Test scaling laws/predictions \rightarrow evolution of spectra with \sqrt{s}

Relevant detectors for

reported analyses located at

ALICE @ the LHC

- central barrel
 V0/T0 detectors: MB trigger and luminometers
- ITS/TPC precise tracking + PID
- EMCal/PHOS electromagnetic calorimeters
 - Triggering capabilities
 - \rightarrow extend high momentum reach

ALICE @ the LHC

LHC Run 1		
рр	p-Pb	Pb-Pb
0.9 TeV	-	-
2.76 TeV	-	2.76 TeV
-	5.02 TeV	-
7 TeV	-	-
8 TeV	-	-

- Relevant detectors for reported analyses located at central barrel
- V0/T0 detectors: MB trigger and luminometers

Photon reconstruction via three independent methods

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE | September 03rd, 2017

- ➢ Pair charged particles with large impact parameter, if DCA small → V⁰ candidate
- Background mainly combinatorial, use discriminators in analysis to primarily select photon candidates from V^o sample on...

- ➢ Pair charged particles with large impact parameter, if DCA small → V⁰ candidate
- Background mainly combinatorial, use discriminators in analysis to primarily select photon candidates from V^o sample on...
 - General criteria
 - Track level

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE | September 03rd, 2017

(1) ... Photon Conversion Method (PCM)

- ➢ Pair charged particles with large impact parameter, if DCA small → V⁰ candidate
- Background mainly combinatorial, use discriminators in analysis to primarily select photon candidates from V^o sample on...
 - General criteria
 - Track level
 - Photon topology
 - ➔ High purities in pp (>99%)
 - ➔ Most central Pb-Pb (>91%)
- $\blacktriangleright \quad |\eta| < 0.9, 0 < \varphi < 2\pi$
- Excellent resolution, but P_{conv}~8.5%

track

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE| September 03rd, 2017

dE/dx

- (2) ... Electromagnetic Calorimeter (EMCal)—
 - $\bullet \quad |\eta| < 0.67, \Delta \varphi = 100^{\circ}$
 - Shashlik calorimeter (lead/scintillator)
 - \blacksquare Cell dimensions: $\Delta\eta\times\Delta\varphi=0.0143\times0.0143$

- (2) ... Electromagnetic Calorimeter (EMCal)—
 - $\bullet \quad |\eta| < 0.67, \Delta \varphi = 100^{\circ}$
 - Shashlik calorimeter (lead/scintillator)
 - Cell dimensions: $\Delta \eta \times \Delta \varphi = 0.0143 \times 0.0143$
- (3) ... Photon Spectrometer (PHOS)
 - $\bullet \quad |\eta| < 0.12, \Delta \varphi = 60^{\circ}$
 - Lead tungstate crystals → very good resolution
 - $\bullet \quad \text{Cell dimensions: } \Delta\eta\times\Delta\varphi=0.004\times0.004$

- (2) ... Electromagnetic Calorimeter (EMCal)—
 - $\bullet \quad |\eta| < 0.67, \Delta \varphi = 100^{\circ}$
 - Shashlik calorimeter (lead/scintillator)
 - Cell dimensions: $\Delta\eta \times \Delta\varphi = 0.0143 \times 0.0143$
- (3) ... Photon Spectrometer (PHOS)
 - $\bullet \quad |\eta| < 0.12, \Delta \varphi = 60^{\circ}$
 - Lead tungstate crystals → very good resolution
 - $\bullet \quad \text{Cell dimensions: } \Delta\eta\times\Delta\varphi=0.004\times0.004$
- Cells with deposited energy are grouped in clusters
 photon candidates
- ➤ Trigger capabilities → select events with energy deposited above a threshold

Meson reconstruction

 \geq Invariant mass of two photon candidates:

$$M_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1 - \cos\theta_{\gamma_1\gamma_2})}$$

- Event mixing for uncorrelated background (use different event pools - mult., z-bin,...)
- Fit with exponential + Gaussian + pol1
 - \rightarrow mass position, width
 - \rightarrow bin counting for raw yields
- \succ Pairing two photons from PCM / PHOS / EMCal during reconstruction

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE | September 03rd, 2017

ALICE

Meson reconstruction

Invariant mass of two photon \geq candidates:

$$M_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1 - \cos\theta_{\gamma_1\gamma_2})}$$

- Event mixing for uncorrelated background (use different event pools - mult., z-bin,...)
- Fit with exponential + Gaussian + pol1 \rightarrow mass position, width
 - \rightarrow bin counting for raw yields
- \geq Pairing two photons from PCM / PHOS / EMCal during reconstruction
- Additionally: "hybrid" methods \rightarrow PCM + calorimeter \rightarrow combine advantages from both methods
 - \rightarrow important cross-check

6

Meson reconstruction

Counts

Counts

Invariant mass of two photon candidates:

$$M_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1 - \cos\theta_{\gamma_1\gamma_2})}$$

- Event mixing for uncorrelated background (use different event pools – mult., z-bin,...)
- Fit with exponential + Gaussian + pol1
 - \rightarrow mass position, width
 - \rightarrow bin counting for raw yields
- Pairing two photons from PCM / PHOS / EMCal during reconstruction
- Additionally: "hybrid" methods
 → PCM + calorimeter
 → combine advantages from both methods
 - → important cross-check

pp@8TeV – eta meson

Results – neutral mesons pp@8TeV

- High momentum reach for π^0 and η
 - Combining 4 methods with 4 different triggers
 - → PCM, EMCal, PCM-EMCal, PHOS (π^{0})
 - → MB + Calorimeter triggers:
 → EMCal (~2, ~8 GeV) and PHOS (~4 GeV)

I TCF

Results – neutral mesons pp@8TeV

Combining 4 methods with 4 different triggers → PCM, EMCal, PCM-EMCal, PHOS (π^{0})

- → MB + Calorimeter triggers: \rightarrow EMCal (~2, ~8 GeV) and PHOS (~4 GeV)
- Precise reference data for LHC Run 2 p-Pb @ 8TeV; total uncertainties (at ~3 GeV/c):

 \rightarrow ~10% for n and n/ π^0

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE | September 03rd, 2017

Results – neutral mesons pp@8TeV

newly on arXiv: 1708.08745, submitted to EPJC

- > Data fitted with TCM (Tsallis), comparisons to:
 - PYTHIA8.2 Monash2013 + Tune4C
 - pQCD NLO calculations (FF:DSS14 / AESSS)

Results – neutral mesons pp@8TeV

newly on arXiv: 1708.08745, submitted to EPJC

- \geq Data fitted with TCM (Tsallis), comparisons to:
 - PYTHIA8.2 Monash2013 + Tune4C
 - pQCD NLO calculations (FF:DSS14 / AESSS)

atio

1.2

1.0

0.8

0.6

0.4

0.2

0.0

ALI-PUB-135950

0.4

Results – neutral mesons pp@8TeV

newly on arXiv: 1708.08745, submitted to EPJC

- \geq Data fitted with TCM (Tsallis), comparisons to:
 - PYTHIA8.2 Monash2013 + Tune4C
 - pQCD NLO calculations (FF:DSS14 / AESSS)
- Observation of m_r scaling violation... \succ
 - ... with significance of 6.2σ below 3.5 GeV/c

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE | September 03rd, 2017

vp. √s = 8 TeV

Results – neutral mesons pp@8TeV

newly on arXiv: 1708.08745, submitted to EPJC

- \geq Data fitted with TCM (Tsallis), comparisons to:
 - PYTHIA8.2 Monash2013 + Tune4C
 - pQCD NLO calculations (FF:DSS14 / AESSS)
- Observation of m_r scaling violation...

• ALICE pp, $\sqrt{s} = 8 \text{ TeV}$

- ... with significance of 6.2σ below 3.5 GeV/c
- Universality of η/π^0 ratio \geq

0.8

0.6

0.4

0.2

ALI-PUB-135803

NA27, PHENIX, ALICE within uncertainties

2

Data morm. unc. 2.6%

Neutral Mesons & Direct Photons with ALICE | September 03rd, 2017 Daniel Mühlheim

678910

Results – neutral mesons pp@2.76TeV

- High momentum reach for π⁰ and η
 - Combining 5 methods with 8 different triggers (MB + calorimeter)
- Including new EMCal single cluster analysis (both π^o decay photons in one cluster) for high momentum reach (16-40 GeV/c in this analysis)

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE| September 03rd, 2017

Results – neutral mesons pp@2.76TeV

- High momentum reach for π⁰ and η
 - Combining 5 methods with 8 different triggers (MB + calorimeter)
- Including new EMCal single cluster analysis (both π⁰ decay photons in one cluster) for high momentum reach (16-40 GeV/c in this analysis)
- Improved reference data for Pb-Pb @ 2.76TeV; total uncertainties (at ~3 GeV/c):
 - \rightarrow ~ 5% for π^0 \rightarrow ~15% for η and η/π^0

Results – neutral mesons pp@2.76TeV

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE| September 03rd, 2017

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE | September 03rd, 2017

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE | September 03rd, 2017

Results – neutral mesons p-Pb@5.02TeV

cold nuclear effects Combining 6

methods \rightarrow PCM-Dalitz

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE | September 03rd, 2017

Results – neutral mesons p-Pb@5.02TeV

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE| September 03rd, 2017

Results – neutral mesons p-Pb@5.02TeV

ALICE

Results – neutral mesons Pb-Pb@2.76TeV

EPJC74 (2014) no.10, 3108

- π⁰ measurement very important input for direct photons
 - Stat. + sys. unc. dominate R_v
- Suppression of neutral mesons in more central events

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE| September 03rd, 2017

...via double ratio:

Many uncertainties cancel, but material budget biggest source of uncertainty for PCM → 4.5%

...via double ratio:

➢ Many uncertainties cancel, but material budget biggest source of uncertainty for PCM → 4.5%

...via π^0 -tagging:

- Material related uncertainties cancel, but EMCal uncertainties enter
- Triggering capabilities of EMCal

...via double ratio:

Many uncertainties cancel, but material budget biggest source of uncertainty for PCM → 4.5%

...via π^0 -tagging:

- Material related uncertainties cancel, but EMCal uncertainties enter
- Triggering capabilities of EMCal

- Needed for all measurements: "decay photon cocktail"
 - All relevant decay photon sources included, however π⁰ and η dominate source of decay photons
 - Important to measure neutral meson spectra with highest precision possible
 - If particle not measured, use m_⊤ scaling,

$$E\frac{\mathrm{d}^3\sigma}{\mathrm{d}p^3} = C^{\mathrm{m}}f(m_T)$$

special caution needed as we know the limitations!

PLB754 (2016) 235-248

- \geq At low momenta (<3 GeV/c)
 - **40-80%**: no significant access at any p_{τ}
 - **20-40%**: excess of 1.5σ
 - **0-20%**: excess of 2.6o

PLB754 (2016) 235-248

- At low momenta (<3 GeV/c)</p>
 - 40-80%: no significant access at any p_T
 - 20-40%: excess of 1.5σ
 - **0-20%**: excess of 2.6σ
- Limiting factor is systematics
 - π^0 uncertainty
 - Energy scale for PHOS
 - Material budget for PCM

 $\rightarrow \pi^{0}$ -tagging may help to improve

For higher momenta, all centralities consistent with direct photon predictions

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE| September 03rd, 2017

> Inverse slope of T_{eff} ≈300 MeV for 0.9 - 2.1 GeV/c for 0-20% → points to early creation - "thermal" photons

Inverse slope of $T_{eff} \approx 300$ MeV for 0.9 - 2.1 GeV/c for 0- \rightarrow points to late production $20\% \rightarrow$ points to early creation - "thermal" photons What is the solution?

Daniel Mühlheim | Neutral Mesons & Direct Photons with ALICE | September 03rd, 2017

- ALICE neutral meson measurements in pp, p-Pb and Pb-Pb collisions recorded at LHC Run 1 energies
 - Rather good agreement with Pythia8 (Monash2013)
 - Room for improvement of NLO pQCD calculations
 - Impose further constraints for fragmentation functions
 - Universality of η/π^0 ratio; m_{τ} scaling violations

- ALICE neutral meson measurements in pp, p-Pb and Pb-Pb collisions recorded at LHC Run 1 energies
 - Rather good agreement with Pythia8 (Monash2013)
 - Room for improvement of NLO pQCD calculations
 - Impose further constraints for fragmentation functions
 - Universality of η/π^0 ratio; m_{τ} scaling violations
- Direct photon measurements in Pb-Pb collisions at 2.76 TeV

- ALICE neutral meson measurements in pp, p-Pb and Pb-Pb collisions recorded at LHC Run 1 energies
 - Rather good agreement with Pythia8 (Monash2013)
 - Room for improvement of NLO pQCD calculations
 - Impose further constraints for fragmentation functions
 - Universality of η/π^0 ratio; m_{τ} scaling violations
- Direct photon measurements in Pb-Pb collisions at 2.76 TeV
- Many interesting publications on Run 1 data to be released soon:
 - Neutral meson production in p-Pb / Pb-Pb collisions
 - Direct photons in pp collisions at 0.9, 2.76, 7 and 8 TeV
 - Isolated photon production in pp collisions at 7 TeV
 - ...

- ALICE neutral meson measurements in pp, p-Pb and Pb-Pb collisions recorded at LHC Run 1 energies
 - Rather good agreement with Pythia8 (Monash2013)
 - Room for improvement of NLO pQCD calculations
 - Impose further constraints for fragmentation functions
 - Universality of η/π^0 ratio; m_{τ} scaling violations
- Direct photon measurements in Pb-Pb collisions at 2.76 TeV
- Many interesting publications on Run 1 data to be released soon:
 - Neutral meson production in p-Pb / Pb-Pb collisions
 - Direct photons in pp collisions at 0.9, 2.76, 7 and 8 TeV
 - Isolated photon production in pp collisions at 7 TeV
 - ...
- ALICE took lots of promising data in LHC Run2; new systems:
 - pp collisions @ 5 TeV, 13 TeV
 - p-Pb collisions @ (5 TeV,) 8 TeV
 - Pb-Pb collisions @ 5 TeV

