

Measurement of open heavy-flavour production in pp and p-Pb collisions with ALICE at the LHC

Renu Bala, for the ALICE Collaboration University of Jammu

The 21st Particles & Nuclei International Conference 1-5 September 2017, IHEP, Beijing, China

Introduction: Why heavy flavours? ALICE detector and heavy-flavour reconstruction

Latest results in pp and p-Pb collisions

- \Rightarrow *p*_T-differential cross section
- → Open heavy-flavour production as a function of charged-particle multiplicity
- → Nuclear modification factor
- → Centrality dependent nuclear modification factor
- \Rightarrow Angular correlation of D mesons with charged particles

Summary

Why heavy flavours?

- → Heavy quarks (c and b quarks) are produced at the early stages of the collision (large Q^2) PLB 519 (2001) 199 $\tau_p \sim 1/2m_c (\sim 0.07 \text{ fm/}c) < \text{QGP}$ formation time ($\sim 0.1-1 \text{ fm/}c$) << QGP life time (10 fm/c)
- ➡ Experience the full collision history → Sensitive probes of the hot and dense QCD matter (QGP) Heavy flavours in pp collisions
 - test pQCD predictions at the highest colliding energies
 - insight into the production mechanisms
 - shed light on c-quark hadronisation: different charmed meson/baryon species
 - ➡ reference for p-A and A-A collisions
- Heavy flavours in p-A collisions

10

- control experiment for the Pb-Pb measurements
- → address cold nuclear matter effects (Cronin enhancement, nuclear PDFs, energy loss....)

PANIC-2017

- Heavy flavours in AA collisions
 - → parton in-medium energy loss
 - → possible thermalisation of heavy quarks in the medium

Talk by Syaefudin Jaelani

Renu Bala

 $\widehat{\mathbf{n}}$

Renu Bala

03-09-2017

Renu Bala

PANIC-2017

03-09-2017

Renu Bala

 $\widehat{\mathbf{n}}$

03-09-2017

Renu Bala

PANIC-2017

03-09-2017

Renu Bala

Run-2: $\sqrt{s} = 5$ TeV: ~120 M min. bias events, $L_{int} \approx 2.3$ nb⁻¹ $\sqrt{s} = 13$ TeV: ~190 M min. bias events, $L_{int} \approx 3.3$ nb⁻¹ Run-2: $\sqrt{s_{\text{NN}}} = 5.023$ TeV: ~600 M min. bias events, $L_{\text{int}} \approx 292 \ \mu b^{-1}$

Renu Bala

PANIC-2017

Heavy-flavour reconstruction: hadronic decays

 $D^{0} \rightarrow K^{-}\pi^{+} \qquad BR \sim 3.93 \%; c\tau \approx 123 \mu m, \quad D^{+} \rightarrow K^{-}\pi^{+}\pi^{+} \qquad BR \sim 9.46 \%; c\tau \approx 312 \mu m, \quad D^{*+} \rightarrow D^{0} \pi^{+} \qquad BR \sim 67.7 \% \rightarrow K^{-}\pi^{+}\pi^{+} \\ D_{s}^{+} \rightarrow \phi \pi^{+} \rightarrow K^{+}K^{-}\pi^{+} \qquad BR \sim 2.28 \%; c\tau \approx 150 \mu m, \quad \Lambda_{c}^{-+} \rightarrow pK^{-}\pi^{+} \qquad BR \sim 6.35 \%; c\tau \approx 60 \mu m, \quad \Lambda_{c}^{-+} \rightarrow pK^{0}_{s} \qquad BR \sim 1.58 \%; c\tau \approx 60 \mu m$

D-meson reconstruction:

Invariant mass analysis of pairs/triplets background reduction via particle identification, (K/ π) separation topological selection and/or background subtraction techniques correction for beauty feed down based on pQCD (FONLL) calculation

03-09-2017

Λ_c reconstruction :

similar technique as for D mesons (Standard) + Multivariate approach (MVA)(p-Pb)

Renu Bala

Heavy-flavour reconstruction: semi-leptonic decays

B, $D \rightarrow e^{\pm} + X$ B, $D \rightarrow \mu^{\pm} + X$ $\Lambda_c^+ \rightarrow e^+ \Lambda v_e$ $\Xi_c^0 \rightarrow e^+ \Xi^- ve$

Electron and muon reconstruction:

Electrons identified with TPC, TOF, EMCAL and/or TRD

Non-heavy-flavour electrons (from π^0 , η Dalitz decays, photon conversions)

removed with invariant mass method (e^+e^-) and/or cocktail

Beauty-hadron decay electrons are measured using the impact parameter distribution

Muons: background (π, K decays) subtracted with data-tuned MC cocktail (p-Pb, Pb-Pb)

Λ_c^+ and Ξ_c^0 reconstruction

- → Wrong-sign e⁻ Λ (e⁻ Ξ ⁻) pairs subtracted from right-sign spectra e⁺ Λ (e⁺ Ξ ⁻)
- ⇒ correct for Λ_b^0 (Ξ_b^0) contribution in wrong-sign spectra and $\Xi_c^{0,+}$ contribution in right-sign spectra for Λ_c^+ measurement
- → Unfold reconstructed $e^{-}\Lambda (e^{-}\Xi^{-}) p_{T}$ spectra to obtain $\Lambda_{c}^{+} (\Xi_{c}^{0})$
- → No feed down subtraction from Ξ_b
 - → lack of knowledge of the absolute BR of $\Xi_b \rightarrow \Xi_c^0 + X$

Renu Bala

Proton-proton results $\sqrt{s} = 5, 7, 8$ and 13 TeV

D-meson cross sections

 $p_{\rm T}$ -differential production cross sections for D⁰, D⁺ and D^{*+} in pp collisions at 5, 7, 8 and 13 TeV Described by pQCD-based calculations within uncertainties

FONLL (JHEP, 1210 (2012) 137), GM-VFNS (Eur. Phys. J. C72 (2012) 2082) k_T factorization (Phys.Rev., D87 (2013) 094022).

Renu Bala

♠

D-meson cross sections

 $p_{\rm T}$ -differential production cross sections for D⁰, D⁺ and D^{*+} in pp collisions at 5, 7, 8 and 13 TeV Described by pQCD-based calculations within uncertainties

FONLL (JHEP, 1210 (2012) 137), GM-VFNS (Eur. Phys. J. C72 (2012) 2082) k_T factorization (Phys.Rev., D87 (2013) 094022).

D⁰ meson cross section down to $p_T=0$ [Phys. Rev. C 94 (2016) 054908]

- → No secondary vertex reconstruction, no topological selection
- → Background subtraction by event mixing, like-sign distribution, track rotation or fit of sidebands

Renu Bala

$\Lambda_c^+ p_T$ -differential cross section

The p_T differential cross section of three measured decay channels (hadronic and semi leptonic) are compatible within statistical and systematical uncertainties

→ The average Λ_c⁺ p_T-differential cross section underestimated by the theory GM-VFNS underestimates by a factor 2.5 POWHEG+PYTHIA6 significantly underpredicts (up to a factor ~20) the data

Renu Bala

PANIC-2017

Λ_c^+/D^0 baryon to meson ratio

- Λ_c^+/D^0 in pp and p-Pb collisions compatible within uncertainties
- →All theoretical predictions underestimate our measurements
- ➡PYTHIA8 with enhanced colour-reconnection tune Mode0 (hadronisation of multiparton system) is closer to the measurements

PYTHIA8: Comput. Phys. Commun. 178 (2008) 852–867, CR, ropes: Phys. Rev. D92 no. 9, (2015) 094010, DIPSY:*JHEP* 08 (2011) 103 , HERWIG: Eur. Phys. J. C58 (2008) 639–707

Renu Bala

Ξ_c^0 cross section and Ξ_c^0/D^0 ratio

- → First Ξ_c^0 production measurement at LHC
- →Branching ratio not measured- range (0.3%-3.2%) estimated from theory
- → Baryon to meson ratio $\Xi_c^0 \rightarrow e^+ \Xi^- v_e / D^0$ higher than predictions
 - → PYTHIA8 Monash (Eur. Phys. J. C74 (2014) 3024)
 - → PYTHIA8 + enhanced colour reconnection Mode0 (JHEP 08 (2015) 003)

Renu Bala

Heavy flavour electrons: charm and beauty

- → FONLL pQCD provides good description over a wide p_T range, both for charm and beauty
- → Low p_T semi-leptonic cross section in good agreement with ATLAS at high p_T (complementary measurement)

Renu Bala

PANIC-2017

Open heavy flavour yields vs multiplicity

Study the effect of multi-parton interactions (MPI) on the hard heavy-flavour scale

- → Increasing trend with multiplicity for muons from HF in pp at 8 TeV
- ⇒ Same trend for D-mesons, non-prompt (B→)J/ Ψ as well as prompt J/ Ψ yields JHEP 1509 (2015) 148
- Similar increase in pp $\sqrt{s} = 7$, 8 and 13 TeV, multiplicity range extended by a factor ~2 for J/ Ψ at 13 TeV.
 - → suggests that MPI are influencing heavy-quark production in high-multiplicity events

Renu Bala

ANIC-2017

← | →

D-meson p_T -differential cross section

- → Factor ~2 statistical improvement and extended $p_{\rm T}$ reach w.r.t Run-1
- ➡ p_T-differential cross section for strange as well as non-strange D mesons from Run-1 (published) are compatible with Run-2 measurements

Renu Bala

PANIC-2017

D-meson RpPb

03-09-2017

- → Factor ~2 statistical improvement and extended $p_{\rm T}$ reach w.r.t Run-1
- \Rightarrow $R_{\rm pPb}$ consistent with unity for strange as well as non-strange D-meson
- → No indication for suppression at intermediate/high $p_{\rm T}$
- \Rightarrow R_{pPb} described within uncertainties by models including initial- or final-state effects

Renu Bala

→ Λ_c⁺ R_{pPb} compatible with D mesons and with unity within uncertainties
→ Models including cold nuclear matter effects or small size QGP formation describe the data within uncertainties

03-09-2017

Renu Bala

Heavy -flavour decay electrons and muons

- → R_pPb measurements compatible with unity within uncertainties for backward, central and forward rapidity at high p_T
 - \Rightarrow different rapidity ranges allow us to access different *x* regimes
 - ⇒ hint of $R_{pPb} > 1$ at backward rapidity in $2 < p_T < 4 \text{ GeV}/c$
- → Described by the models including initial- or final-state effects

Kang et al: PLB 740(2015)23 Sharma et al: PRC 80(2009) 054902 FONLL: JHEP 9805 (1998)007 EPOS: JHEP 0904(2009)065 Vitev et al: PRC 80 (2009)054902 *Z.B.Kang et al.: PLB 740(2015)23*

Renu Bala

Beauty-decay electron R_{pPb}

→ R_{pPb} measurements compatible with unity within uncertainties
→ Described by the models including initial-state effects and energy loss in CNM

FONLL: JHEP 1210, 137 (2012), EPS09: JHEP 0904, 065 (2009) Incoherent scattering: Phys. Lett. B 740, 23 (2015), CNM energy loss: Phys. Rev. C 80, 054902 (2009)

Renu Bala

PANIC-2017

D-meson production vs multiplicity

Renu Bala

PANIC-2017

▲ Correlations between D mesons and charged particles <= </p>

Access the charm fragmentation and jet properties in presence of nucleus

New from Run-2

- ➡ A significant increase of precision and access new p_T interval w.r.t run-1
- ➡ Angular correlations are consistent within uncertainties in pp and p-Pb collisions after baseline subtraction
- No sign of modification in p-Pb collisions due to cold nuclear effects within uncertainties

03-09-2017

LI-PREL-133622

Renu Bala

03-09-2017

➡ First charmed-baryon measurement at mid-rapidity at LHC energies

- measured cross section and baryon to charm ratios higher than all available theoretical predictions
- → D-meson R_{pPb} : compatible results with run-1 analysis, better precision, extended p_T reach
- → R_{pPb} of charm mesons, baryons and leptons consistent with unity and models including CNM effect
- → Ratio central to peripheral $(Q_{cp}) > 1$: initial- or final-state effect? radial flow in p-Pb?
- ➡No modification of azimuthal correlation between D mesons and charged particles in p-Pb collisions. Consistent with pQCD-based model calculations within uncertainties.

Renu Bala

backup

D-meson Qppb

Average D-meson nuclear modification factor for different centrality classes selected with ZNA estimator

No centrality dependence was found pPb

Renu Bala

03-09-2017

✓ D mesons at RHIC vs LHC: different R_{AA} trend observed for p_T < 2 GeV/c?

Caveats: Stronger shadowing, less steep pp spectrum at LHC, different effect of radial flow and coalescence.

✓ Some models (TAMU, Phys. Lett. B 735 (2014) 445) can describe both results.

A

Heavy-flavour production vs multiplicity

Self normalised yields increase with chargedparticle multiplicity at mid rapidity as observed in pp collisions

- \checkmark faster than linear increase
- ✓ similar trend for heavy-flavour decay electrons and D mesons
- ✓ different p_T ranges for better kinematic comparability
- \checkmark at high $p_{\rm T}$ electrons are dominated by beauty

Measurements are reproduced well by EPOS with hydro

03-09-2017

EPOS: PRC 89(2014) 064903

From Signal to Cross section

03-09-2017

https://indico.cern.ch/event/486605/contributions/1996610/attachments/1216371/1776468/PWG-PP_250116.pdf

Renu Bala

From Signal to Cross section

The differential cross section is computed for eg: D⁺

Feed Down Correction:

Two ways of calculating the feed down correction. N_{b} and f_{c}

A convolution of fc and N_{b} is taken as a systematic on fprompt .

Renu Bala

PANIC-2017

VOA and VOC estimator

03-09-2017

Renu Bala

Physics motivations: Why heavy flavours? <= | =>

Heavy quarks lose less energy than light quarks and gluons due to the color-charge and the deadcone effects

 $\Delta E(\mathbf{g}) > \Delta E(\mathbf{u},\mathbf{d},\mathbf{s}) > \Delta E \mathbf{c} > \Delta E \mathbf{b}$ Dokshitzer and Kharzeev, PLB 519 (2001) 199

Observable: Nuclear modification factor (R_{AA})

 $R_{AA}(p_T) = \frac{1}{\langle T_{AA} \rangle} \frac{dN_{AA} / dp_T}{d\sigma_{pp} / dp_T}$

Expected Hierarchy: $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$?

Renu Bala

Another observable: azimuthal anisotropy \checkmark Provides information on the degree of thermalisation (v_2) of heavy quarks in the medium at low / intermediate p_T and is sensitive to the path-length dependence of heavyquark energy loss at high p_T

