

Tau Identification at CMS in LHC Run-2

Somnath Choudhury (for the CMS collaboration)

21st Particles and Nuclei International Conference Beijing (China), 1 – 5 September 2017

 $\boldsymbol{\tau}$ is the only lepton that decays to hadrons

Mass $m_{\tau} = 1.78 \text{ GeV}$	
Lifetime $\tau = 290 \times 10^{-1}$	⁵ S
cτ = 87 μm	

Tau Decay Signature

- ~65% of tau decays
- 1 or 3 π⁺
- 0, 1, or 2 π⁰
- Via ρ or a₁ decay

Challenges

- Reject huge jet $\rightarrow \tau_h$ background
- Reject $e \rightarrow \tau_h$ fakes
- Reject $\mu \rightarrow \tau_h$ fakes(relatively easier)
 - τ_h candidates are collimated:
 - $\circ \qquad \mbox{A few overlapping } \pi^{\pm} \mbox{ and } \gamma \mbox{ from } \\ \pi^0 \mbox{ decays }$
- Particle Flow used to resolve objects

Reconstructed using standard e/µ reconstruction

Reconstruction of π^{\pm} , ρ^{\pm} , a_1^{\pm} signatures

Decay Mode	Resonance	BR [%]	
$\tau^- \rightarrow e^- \overline{\nu}_e \nu_{\tau}$		17.8	
$\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau$		17.4	
$\tau^- \rightarrow \pi^- \nu_{\tau}$	π (140)	11.6	
$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$	ho(770)	26.0	
$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$	a ₁ (1260)	10.8	
$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$	a ₁ (1260)	9.8	
$\tau^- \rightarrow \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$		4.8	
Other hadronic modes		1.7	Q
All hadronic modes		64.8	

Hadron Plus Strips Algorithm (Run-1)

- Start from an anti-KT (R=0.4) PF jet
- Reconstruct decay modes with one or three charged hadrons, and one or two neutral pions
- Pions reconstructed using an elongated η x Φ strips collecting energy spread from photon conversions due to magnetic field
- Charged hadrons and photons reconstructed from tracks and calorimeter energy using a particle-flow technique

Mass constraints compatible with ρ and a_1 meson mass

500

0

 \mathbf{h}^{\pm}

 $h^{\pm} \pi^0 s$

- Purity of tau decay mode reconstruction is 80-90%
- Data are in well agreement with the expectations

 τ decay mode

Use variables sensitive to tau lifetime, in addition to the isolations BDT for MVA training (τ as signal & jets as background)

Kinematic Variables:

- $P_T(\tau)$
- η(**τ**)
- Reconstructed tau decay mode

Cut-based Isolation:

- P_T (charged hadrons)
- P_T (photons)
- Pileup correction ($\Delta \beta$)
- p_T of photons in strips outside signal cone

Tau lifetime variables:

- Signed 2d and 3d impact parameter of the leading track and its significance
- Presence of secondary
 vertex
- au flight length
- τ flight significance
- Additional particle-flow
 photon variables within
 signal and isolation cones

Signal and background events re-weighted to have similar p_T and η distributions

MVA Tau ID Variables

CMS-PAS-TAU-16-002

Dynamic strip algorithm with MVA isolation Factor of ~2 reduction in fakes compared to cut-based

Tau ID Efficiency

Visible mass of $\tau_{\mu}\tau_{h}$ **CMS DP -2017/006** 2016, 36.8 fb⁻¹ (13 TeV) 2016, 36.8 fb⁻¹ (13 TeV) 800 - 1 Events/bin Events/bin 700 CMS Preliminary CMS Observed Observed Preliminary 100 $Z \rightarrow \tau_{\mu} \tau_{h}$ $Z \rightarrow \tau_{\mu} \tau_{h}$ Pass Fail **DY** others DY others 600 tt+jets tt+jets 80 Electroweak Electroweak 500 QCD multijet QCD multijet 60 400 F Uncertainty Uncertainty 300 E 40 FAIL τ-ID PASS τ-ID 200 20 100 0 0 Obs./Exp. Obs./Exp. 1.2 1.2 0.8 0.8 100 120 40 60 80 50 100 150 200 m_{vis} (GeV) m_{vis} (GeV)

- Tau ID efficiency measured from $Z \rightarrow \tau \tau \rightarrow \tau_{\mu} \tau_{h}$ events using a **Tag** (µ) & **Probe** (τ_{h}) method
- Data/MC scale factor consistent with unity

τ_h Energy Scale

$e \mathop{\rightarrow} \tau_h$ misidentification measured from Z $\xrightarrow{}$ ee events

(where probe electron is reconstructed as τ_h and passes MVA anti-electron discriminator)

The Data/MC scale factors for different working points of the discriminator are about 1.3 to 1.6 with 10 to 20% uncertainty

• $\mu \rightarrow \tau_h$ misidentification measured from Z $\rightarrow \mu \mu$ events

> visible mass distribution of μT_h pair after maximum likelihood fit with $Z \rightarrow \mu \mu$ event selection

the probe muon is reconstructed as T_h and passes the loose (left) and tight (right) working points of anti-muon discriminator.

CMS DP-2017/036

CMS DP-2017/036

Misidentification rate of jets to taus versus p_T and η for W+jet events after MVA medium tau identification discriminator: **average rate 0.7%** covering wide jet p_T range 20 GeV - 300 GeV

- Start from a large CA8 jet (Cambridge-Aachen R=0.8)
- Use subjet(sj) finding algorithm and require 2 subjets: p_T(sj1,sj2) > 10 GeV Max(mass(sj1),mass(sj2))/mass(jet)< 0.667
- In semi-leptonic final state the lepton is considered a subjet at this stage
- Use subjets as seeds for Tau reconstruction
- Then the tau reconstruction proceeds using the standard HPS algorithm

tau reconstruction efficiency vs tau p_T

Tau $|\eta| < 2.3$ and $p_T > 20$, Loose Isolation

Major improvement in fully hadronic channel

Misidentification Probability vs large Cone Jet p_T

The fake probability increases significantly. However, the background contributions at such high p_T is smaller

Boosted Tau ID Validation

High $p_T Z \rightarrow \tau \tau \rightarrow \tau_{\mu} \tau_h$ events (Tight muon selection and Loose MVA isolation for τ_h)

- Tau identification at the trigger level is constrained by timing as well as rates
- Tau ID at Level-1 Trigger (Electronics)
 - No possibility of using tracker detector
 - A simpler algorithm developed using energy deposits in the trigger towers (ECAL + HCAL towers)
- Tau ID at High Level Trigger (Computing Farm)
 - Use a simplified version of offline algorithms to increase efficiency and meet timing constraints
 - A simple cone based algorithm employed at HLT
 - o Based on particle-flow with regional tracking

Improved algorithm in run-2 compared to run-1

• **Clustering:** Create tau clusters from Trigger Towers

- Merging: Search for neighbours in a defined path (~15% merged) (tau decay products can be spread out)
- Calibration: As function of E_T, eta, merging, and presence of ECAL deposits, also on tower by tower basis using charged and neutral pions
- **Isolation:** Computed as $E_T(iso) = E_T(6x9) E_T(tau)$ Cut on $E_T(iso)$ depends on p_T , $|\eta|$, and pileup

 Very good E_T response and resolution, thanks to in-situ calibration of L1 tau

re-designing of the L1 tau trigger for Run-2 helped to keep di-tau trigger thresholds at ~30 to 35 GeV

Tau ID at HLT

- L2 & L2.5 steps are needed in double-hadronic tau paths to reduce rate before PF in run at HLT
 - Needed to control timing
- Build L2 calo tau-jets seeded by L1 tau candidates
 - Require two calo tau-jets with $p_T > 26 \text{ GeV } \& |\eta| < 2.2$
- L2.5:
 - Regional pixel tracking around the calo taus
 - Use pixel tracks to reconstruct vertices
 - Candidates are required to pass pixel track based isolation
- L3:
 - Particle flow with regional pixel tracking. Regions defined around L2.5 candidates
 - Simple cone based algorithm (leading track finding)
 - Combined (track + photon) isolation

Per-leg combined L1 and High Level trigger efficiency of the di- τ_h (medium isolation, $p_T > 35$ GeV, seeded by di- τ Level-1) trigger for $H \rightarrow \tau_h \tau_h$ analysis

High Level Trigger efficiency of the τ_h leg of the $\tau_h + E_T^{miss}$ (medium isolation, $p_T > 50$ GeV, seeded by E_T^{miss} Level-1) trigger for the H[±] \rightarrow $\tau_h v_{\tau}$ analysis

- CMS tau reconstruction algorithm is one of the biggest beneficiary of the particle-flow method
 - PF helps reconstruct individual decay modes => improving significantly the tau identification capability compared to leading track algorithms
 - Furthermore, the MVA based tau isolation significantly improve suppression of the jet to tau fake rate
- There is already a very good effort to identify taus in boosted regime. Efforts are made to validate the method from data (very few events with high p_T Z events)
- The tau algorithm at level-1 trigger re-designed for LHC run-2 (thanks to Phase-1 trigger upgrade) => Able to keep the trigger threshold similar or less than run-1
 - More studies ongoing for further improvement for future data taking