

Heavy ion physics at LHCb

Jiayin Sun (Tsinghua University) On behalf of the LHCb collaboration

The 21st Particles & Nuclei International Conference 1-5 September 2017, IHEP, Beijing, China

Outline

- LHCb detector
- *p*Pb collisions: recent results
 - Open heavy flavor results
 - Hidden heavy flavor results
- PbPb collisions: work in progress
- Fixed target: first results
 - Heavy flavor in *p*Ar
 - Antiproton in *p*He

LHCb detector

- A single arm forward spectrometer designed for the study of particles containing *c* or *b* quark.
- Acceptance: $2 < \eta < 5$
- Vertex detector
 - IP resolution ~ $20 \ \mu m$
- Tracking system
 - $\frac{\Delta p}{p} = 0.5\% 1\%$ (5-200 GeV/c)
- RICH
 - $K/\pi/p$ separation
- Electromagnetic
 - + hadronic
 - Calorimeters
- Muon systems

JINST 3 (2008) S08005 3 *IJMPA 30 (2015) 1530022*

PANIC2017

pPb datasets and recent results

- Rapidity Coverage
 - *y**: rapidity in nucleon-nucleon cms
 - $y_{cms} = \pm 0.465$
 - Forward: $1.5 < y^* < 4.0$
 - Backward: $-5.0 < y^* < -2.5$
 - Common region: $2.5 < |y^*| < 4.0$

$$\sqrt{s_{NN}} = 5 \text{ TeV} (2013)$$

- $pPb (1.06 \text{ nb}^{-1}) + Pbp (0.52 \text{ nb}^{-1})$
- Open heavy flavor D^0 and Λ_c^+
- Collectivity
- $\sqrt{s_{NN}} = 8 \text{ TeV} (2016)$
 - $pPb (13.6 \text{ nb}^{-1}) + Pbp (21.8 \text{ nb}^{-1})$
 - Hidden heavy flavor J/ψ

Prompt D^0 measurement in *p*Pb at 5TeV

• Reconstructed through decay channel: $D^0 \rightarrow K^- \pi^+$

IP

- Inclusive *D*⁰ mesons from fitting invariant mass dist.:
 - Signal: Crystal Ball
 - Background: linear
- Prompt *D*⁰ fraction extracted from fitting impact parameter dist.:
 - Prompt: simulation
 - D^0 -from-*b*: simulation
 - Background: sideband in data

^{9/2/2017}

Prompt D^0 at 5TeV forward-backward production ratio

- $R_{FB} = \frac{d\sigma(+|y^*|,p_T)/dx}{d\sigma(-|y^*|,p_T)/dx}$
- R_{FB} does not need results from pp collisions.
- Compared to next-to-leading order NLO calculations with different nPDFs
- Consistent with theoretical calculations within uncertainty

LHCb-CONF-2017-005

Prompt Λ_c^+ at 5TeV forward-backward production ratio

- $R_{FB} = \frac{d\sigma(+|y^*|,p_T)/dx}{d\sigma(-|y^*|,p_T)/dx}$
- R_{FB} does not need results from pp collisions.
- Compared to next-to-leading order NLO calculations with different nPDFs
- Consistent with theoretical calculations within uncertainty

Charmed baryon/meson production ratio $R_{\Lambda_c^+/D^0}$ at 5TeV LHCb-CONF-2017-005

- $R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*, p_T)}{\sigma_{D^0}(y^*, p_T)}$
- EPS09LO & EPS09NLO gives similar predictions.
- nCTEQ15 slightly lower.
- Forward:
 - Consistent at lower $p_{\rm T}$
 - Below theory at higher $p_{\rm T}$
- Backward:
 - Consistent for all $p_{\rm T}$

Eur. Phys. J. C77 (2017) 1, Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

PANIC2017

Charmed baryon/meson production ratio $R_{\Lambda_c^+/D^0}$ at 5TeV LHCb-CONF-2017-005

•
$$R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*, p_T)}{\sigma_{D^0}(y^*, p_T)}$$

- EPS09LO & EPS09NLO gives similar predictions.
- nCTEQ15 slightly lower.
- Forward:
 - Consistent for all |*y*^{*}|
- Backward:
 - Consistent at lower $|y^*|$
 - Displays a rising trend with increasing |y^{*}|

Prompt and nonprompt J/ψ in *p*Pb at 8TeV

- Reconstructed through $J/\psi \to \mu^+\mu^-$
- Signal extraction with 2D simultaneous fit to mass and the pseudo proper decay time

$$t_{z} \equiv \frac{\left(z_{J/\psi} - z_{PV}\right) \times M_{J/\psi}}{p_{z}}$$

- Prompt and nonprompt (from-*b*-hadrons) separated
- Fraction from *b* hadrons:
 - Increasing trend
 - Low p_T : cold nuclear matter effects different for the prompt and nonprompt

PANIC2017

arXiv:1706.07122

9/2/2017

arXiv:1706.07122

Prompt J/ψ at 8TeV nuclear modification factor in *p*Pb

 $R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})}{\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})}, A=208$

- pp reference: interpolation of LHCb measurements at 7, 8 and 13TeV
- Forward rapidity: suppression up to 50% at low $p_{\rm T}$, decreasing with increasing $p_{\rm T}$
- Backward rapidity: closer to unity
- Overall agreement with models with large uncertainties on the gluon PDFs at low x
- Compatible with 5TeV results

JHEP 04 (2009) 065 arXiv:1706.07122

J/ψ -from-*b*-hadrons at 8TeV nuclear modification factor in *p*Pb

 $R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})}{\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})}, A=208$

- pp reference: interpolation of LHCb measurements at 7, 8 and 13TeV
- Forward rapidity: smaller suppression up to 30% at low $p_{\rm T}$, reach unity at higher $p_{\rm T}$
- Backward: compatible with unity
- FONLL with EPS09NLO consistent with data
- Compatible with 5TeV results

Prompt J/ψ at 8TeV forward-backward production ratio

•
$$R_{FB} = \frac{d\sigma(+|y^*|,p_T)/dx}{d\sigma(-|y^*|,p_T)/dx}$$

- R_{FB} does not need results from pp collisions.
- Prompt J/ψ :
 - Clear forward-backward asymmetry
 - Increasing trend with increasing $p_{\rm T}$
- Nonprompt J/ψ :
 - Closer to unity
- Models for prompt J/ψ only
- Consistent with 5TeV results

PbPb collisions

- December 2015: first LHCb PbPb data taken
- $\sqrt{s_{NN}} = 5 \text{ TeV} (3-5 \ \mu b^{-1})$
- Event classification: total energy in the calorimeters (Ecal)
- Analyses limited by saturation in Vertex Locator (VELO)
- Track reconstruction: 50-100% event activity (~15k clusters)

Entries [a.u.]

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

Fixed target physics

- LHCb: only experiment at the LHC can operate in fixed-target mode
- SMOG: The System for Measuring Overlap with Gas
 - Unique feature
 - noble gas (He, Ne, Ar...) injection inside the LHC beam close to the interaction point
 - Luminosity measurement
 - Internal gas target ٠
- Allows *p*-gas and ion-gas collisions
- $\sqrt{s_{NN}}$ region between 20 GeV (SPS) and 200 GeV (RHIC)
- Access nPDF anti-shadowing region and intrinsic charm content in the nucleon

Biorken-x = fraction of the nucleon momentum carried by a parton

LHCb

Charm production in pAr collisions

- Dataset:
 - $\sqrt{s_{NN}} = 110 \text{ GeV} (2015)$
 - 6.5 TeV proton beam on Ar gas target
 - Protons on target: 4×10^{22}
 - ~500 J/ψ and ~6500 D^0
- Shapes consistent with **PYTHIA** and interpolation between HERA-B and PHENIX

LHCb-CONF-2017-001 JHEP (2013) 2013:122 JHEP (2013) 2013: 155

Charm production in *p*Ar collisions

LHCb-CONF-2017-001

- $J/\psi/D^0$ cross section ratio
 - Luminosity cancels
 - Increase with $p_{\rm T}$
 - Little dependence on rapidity
- Demonstrate the feasibility of a heavy-flavor-fixed-target program at LHCb
- Theoretical calculations are welcome

Measurement of \bar{p} production in pHe collisions

- AMS-2: possible anti-proton excess at high energies
- p̄/p ratio predictions limited by uncertainties on p̄ production crosssections, particularly for p-He
- Prompt production at $\sqrt{s_{NN}} = 110$ GeV in *p*He collisions
- EPOS LHC prediction:
 - Data/MC ~ 1.19 ± 0.08

Conclusion

- Heavy ion collisions
 - *p*Pb collisions at $\sqrt{s_{NN}} = 5$ and 8 TeV in 2013/2016
 - Open heavy flavor analyses: prompt D^0 and Λ_c^+
 - Hidden heavy flavor: prompt and nonprompt J/ψ
 - Angular correlation measured (not included)
 - PbPb collisions at $\sqrt{s_{NN}} = 5$ TeV in 2015
 - Ongoing analyses on semi-central to peripheral collisions
- Fixed target collisions
 - SMOG: unique feature enabling a fixed target program in LHCb
 - First results on
 - D^0 and J/ψ production in pAr collisions $\sqrt{s_{NN}} = 110 \text{ GeV}$
 - \bar{p} production in *p*He collisions $\sqrt{s_{NN}} = 110 \text{ GeV}$

backup

SMOG: Gas target in LHCb

- SMOG: System for Measuring Overlap with Gas
- Inject noble gas (He, Ne, Ar...) into the LHC beam ($\sim \pm 20$ m) around the LHCb collision region
 - Gas pressure ~ 2×10^{-7} mbar
 - Primarily for measuring luminosity at LHC JINST 9, (2014) P12005
 - Fixed target: use non-colliding bunches
- Fixed target collisions:
 - Covers mid to backward rapidity region:

•
$$y^* = y - 4.77$$

$E_{\text{beam}}(p)$	<i>p</i> -SMOG	Pb-SMOG
2.5 TeV	69 GeV	
6.5 TeV	110 GeV	69 GeV
7.0 TeV	115 GeV	72 GeV
0/0/0015		DA NICOO17

9/2/2017

Charm signals in PbPb dataset

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

Strange signals in PbPb dataset

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

Ultraperipheral J/ψ photo-production

• Selecting events containing only two muon tracks

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

PANIC2017

Long-range near-side angular correlations

events, a longrange correlation on the near side is observed in the pseudorapidity range $2.0 < \eta < 4.9$