

Hadron form factors at BESIII

Zhaoxia Meng (University of Jinan) on behalf of BESIII Collaboration 21st PANIC, 2017 Sep. 1- Sep. 5, Beijing

Outline

- Definition of baryon form factors (FFs)
- BEPCII & BESIII detector
- Status of baryon FFs measurements
 - Proton FFs
 - -Neutron FFs
 - -Hyperon FFs
- Status of meson FFs measurements
- Summary

Form factor

1

Hadrons have structure

FFs describe hadrons' internal structure

Understanding hadrons' structure **helps understand QCD**

FFs help understand strong interaction

Inputs to QCD models

Dirac FF and Pauli FF

Elastic scattering: Space-like (SL) region, q² < 0 Annihilation:

Time-like (TL) region, $q^2 > 0$

Baryon vertex:
$$\Gamma_{\mu} = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_B} \kappa F_2(q^2)$$

$$F_1\!\left(q^2
ight)$$
 : Dirac FF, $F_2\!\left(q^2
ight)$: Pauli FF

Baryon vertex:
$$\Gamma_{\mu} = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_B}\kappa F_2(q^2)$$

$$F_1ig(q^2ig)$$
 : Dirac FF, $F_2ig(q^2ig)$: Pauli FF

EM FFs and TL angular distribution

Angular analysis

 θ

s and θ :

TL:
$$\frac{d\sigma_{born}}{d\Omega} = \frac{\alpha^2 \beta C}{4s} \left[\frac{1}{\tau} \sin^2 \theta \left| G_E \right|^2 + \left(1 + \cos^2 \theta \right) \left| G_M \right|^2 \right] \begin{cases} \beta = \sqrt{1 - 1/\tau} \\ C: \text{Coulomb} \\ \text{correction} \end{cases}$$

s=q²: 4-momentum transferred by the virtual photon function of θ : polar angle of baryon in

CM (center-of-mass system)

Ratio of EM FFs and effective FFs

Angular distribution written as function of EM FFs ratio:

$$\frac{d\sigma_{born}}{d\Omega} = \frac{\alpha^2 \beta C}{4s} \left| G_M(s) \right| \left[\left(1 + \cos^2 \theta \right) + R_{EM}^2 \frac{1}{\tau} \sin^2 \theta \right]$$

Ratio of EM FFs:

$$R_{EM} = \left| G_E(s) / G_M(s) \right|$$

Born cross section:

Assume:
$$|G| = |G_E| = |G_M|$$

$$\sigma_{born} = \frac{4\pi\alpha^2\beta C}{3s} \left[\left| G_M \right|^2 + \frac{1}{2\tau} \left| G_E \right|^2 \right]$$

Above baryon

threshold: C=1

 $\left|G(s)\right| = \sqrt{\sigma_{born}} \left| \frac{4\pi\alpha^2\beta C}{3s} \left(1 + \frac{1}{2\tau}\right) \right|$

All formula valid for spin 1/2

BEPCII (Beijing Electron Positron Collider II)

- - Runs started in 2009
 - CM energy:
 2.0 4.6 GeV
 - "τ-charm factory"

- Peak instantaneous luminosity:
 - 1×10³³ cm⁻²s⁻¹ (designed)
 - 1×10³³ cm⁻²s⁻¹ (achieved)

Energy spread: 5.16×10⁻⁴ GeV

BESIII (BEijing Spectrometer III) **at BEPCII**

	MDC	TOF	EMC	MUC
Sub-detectors	Main Drift Chamber	Time of Flight	Electromagnetic Calorimeter	Muon Counter
Resolution	115µm(wire), < 5% (dE/dx)	68ps (Barrel), 70ps (Endcap)	2.3% (energy)	

Outline

- Definition of baryon form factors (FFs)
- BEPCII & BESIII detector
- Status of baryon FFs measurements
 - Proton FFs
 - e⁺e⁻→pp̄ process
 - ISR (Initial State Radiation) process
 - Neutron FFs
 - Hyperon FFs
- Status of meson FFs measurements
- Summary

Proton FFs in $e^+e^- \rightarrow p\bar{p}$

Energy scan method

Proton FFs at BESIII in $e^+e^- \rightarrow p\bar{p}$

Phys. Rev. D 91, 112004 (2015)

Born cross section at **12** CM energies from 2.2324 to 3.671 GeV, integrated luminosity 156.94 *pb*⁻¹, scanned in 2011 and 2012

EF FFs at **12** CM energy points

Proton FFs at BESIII in $e^+e^- \rightarrow p\bar{p}$

Phys. Rev. D 91, 112004 (2015)

Born cross section at **12** CM energies from 2.2324 to 3.671 GeV, integrated luminosity **156.94** *pb*⁻¹, scanned in **2011 and 2012**

EF FFs at **12** CM energy points

Proton FFs at BESIII in $e^+e^- \rightarrow p\bar{p}$

Phys. Rev. D 91, 112004 (2015)

Prospections of proton FFs in $e^+e^- \rightarrow p\overline{p}$ at BESIII

21 energy points between 2-3.08 GeV in 2015, with large statistics.

- More precise measurement
- Aim to measure R_{EM} of 10-15% with much narrower q²-bins

E _{cm} (GeV)	Lumi. (pb-1)	Purpose
2.2	13.0	Nucleon FFs & Y(2175)
2.95	15.7	$m_{p\overline{p}}$ step
2.981	15.4	$m_{p\overline{p}}$ step, η_c
3.0	15.3	m - step
3.02	16.6	mpp = pp

 The 2 trips found by Babar can be studied

Proton FFs in ISR process

- Tagged method (preliminary results)
- Untagged method (on going)

Datasets using:

E _{cm} (GeV)	3.773	4.009	4.230	4.260	4.360	4.420	4.600
Taking time	2010-2011	2011	2013	2013	2013	2014	2014
Lumi. (<i>pb</i> -1)	2917.00	481.96	1047.34	825.67	539.84	1028.89	566.93

Proton FFs at BESIII with ISR (Tagged)

ISAB H

proton threshold – 1.95 GeV

Tagged method: γ is detected

- $E_{\gamma} > 25$ MeV & $|\cos\theta_{\gamma}| < 0.8$, in the EMC barrel
- $E_{\gamma} > 50 \text{ MeV } \& 0.86 < |\cos\theta_{\gamma}| < 0.92$, in the EMC endcap

Angular distribution at ~1.95

- Fit is good
- Green dashed line: Magnetic
 FFs contribution
- Violet dashed line: Electric FFs contribution

Proton FFs at BESIII with ISR (Tagged)

Effective Form Factor

 Consistent with Babar and BESIII R scan results

- Measured in **31** mass intervals
- Consistent with previous results

E _{cm} (GeV)	Stat.	Syst.	E _{cm} (GeV)	Stat.	Syst.
δR _{EM} /R _{EM}	16% - 34%	5% - 22%	δG _{eff} /G _{eff}	5% - 32%	2% - 30%

Neutron FFs at BESIII

- The first results obtained by FENICE 20 years ago
- Confirmed by SND recently in 2014
- Compared to the proton FFs from Babar
 - Similar distributions of proton and neutron

Prospects at BESIII: with data scanned in 2015

- First measurement at BESIII
- Between 2 and 3.08 GeV
- High statistics
- Narrow q²-bins (~ 100 MeV)

Hyperon FFs at BESIII

Baryon born cross section: $\sigma_{born}(s) = \frac{4\pi\alpha^{2}\beta C}{3s} \left[\left| G_{M}(s) \right|^{2} + \frac{1}{2\tau} \left| G_{E}(s) \right|^{2} \right] - \begin{bmatrix} \beta = \sqrt{1 - 4m^{2}/s} \\ \text{Neutral: } C = 1 \\ \text{Charged: } C = \frac{\pi\alpha}{\beta} \frac{1}{1 - \exp(-\pi\alpha/\beta)} \end{bmatrix}$

Expecting at threshold:

- For neutral baryon, cross section should almost vanish
 - And increases with √s
- For charged baryon, cross section is non-zero

Measurement near threshold:

- Help to understand the Coulomb factor when baryon pair produced, which is not as expected presently in many cases
 - And this factor may connect to the dark matter search
- More deeply to understand the baryon structure

Hyperon FFs at BESIII

• Preliminary results on Λ FFs

- At 4 energy points: 2.2324, 2.4, 2.8, 3.08 GeV with 2015 scan
- 2.2324 is 1 MeV above Λ threshold

- Results consistent with previous measurements
- With improved precision
- Cross section and EF FFs are measured near threshold
 - Helpful in understanding the mechanism of baryon production

Hyperon FFs at BESIII

- Preliminary results on Λ_c FFs
- At 2 energy points: 4.5745 and 4.5996 GeV from 2011 to 2014
 - 4.5745 GeV is 1.6 MeV above Λ_c threshold

Weak energy dependence near threshold
 Strong interaction should be considered into traditional theoretical prediction

	GeV	G _E /G _M	
Fs:	4.5745	$1.14 \pm 0.14 \pm 0.07$	
	4.5995	$1.23 \pm 0.05 \pm 0.03$	

- The Λ_C form factor ratio |G_E/G_M| is measure the first time
 - Provide **important insights** to production mechanism and structure of baryons 22

Outline

- Definition of baryon form factors (FFs)
- BEPCII & BESIII detector
- Status of baryon FFs measurements
- Status of meson FFs measurements
 - Results on charged kaon and pion FF measurements
- Summary

Meson FFs at BESIII

Meson FFs at BESIII

Summary

- BESIII already had important results on hadron FFs measurements
- Baryon FFs:
 - Proton, Λ , Λ_c results published or preliminary
 - Prospect to have more results with 2015 scan data
- Meson FFs:
 - Preliminary results on charged kaon FFs
 - Prospect to have more results on meson FFs, like neutral kaon, with 2015 scan data
 - Results on pion (Please see Marco DESTEFANIS' talk)

Thank you for your attention!

Back-up

Measurements of baryon FFs

Electromagnetic
FFs:
$$G_{E}(q^{2}) = F_{1}(q^{2}) + \frac{q^{2}}{4M_{B}}F_{2}(q^{2})$$
Electric
$$G_{M}(q^{2}) = F_{1}(q^{2}) + F_{2}(q^{2})$$
Magnetic

How to measure? Angular analysis
SL:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[G_E^2 + \frac{\tau}{\varepsilon}G_M^2\right] \frac{1}{1+\tau} \begin{bmatrix}-\varepsilon = 1/\left[1+2(1+\tau)\tan^2\frac{\theta}{2}\right]\\ -\tau = q^2/(4M_B^2) \end{bmatrix}$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta \zeta}{4q^2} \left[\frac{1}{\tau} \sin^2 \theta \left| G_E \right|^2 + \left(1 + \cos^2 \theta \right) \left| G_M \right|^2 \right] \begin{bmatrix} \beta = \sqrt{1 - 1/\tau} \\ -\zeta : \text{Coulomb} \\ \text{correction} \end{bmatrix}$$